Publications by authors named "M V Boekschoten"

Background & Aims: Cholestatic liver injury is associated with c-Jun N-terminal kinases (JNK) activation in distinct cell types. Its hepatocyte-specific function during cholestasis, however, has not yet been established. Therefore, in our present study, we investigated the role of JNK1/2 during cholestasis and dissected its hepatocyte-specific function.

View Article and Find Full Text PDF

It is currently not well known how necroptosis and necroptosis responses manifest in vivo. Here, we uncovered a molecular switch facilitating reprogramming between two alternative modes of necroptosis signaling in hepatocytes, fundamentally affecting immune responses and hepatocarcinogenesis. Concomitant necrosome and NF-κB activation in hepatocytes, which physiologically express low concentrations of receptor-interacting kinase 3 (RIPK3), did not lead to immediate cell death but forced them into a prolonged "sublethal" state with leaky membranes, functioning as secretory cells that released specific chemokines including CCL20 and MCP-1.

View Article and Find Full Text PDF

Immunoisolation of pancreatic-islets in alginate-microcapsules is applied to treat diabetes. However, long-term islet function is limited, which might be due to damaged and lack of contact with pancreatic extracellular matrix (ECM) components. Herein we investigated the impact of collagen IV combined with laminin sequences, either RGD, LRE, or PDSGR, on graft-survival of microencapsulated bioluminescent islets in vivo.

View Article and Find Full Text PDF

Docosahexaenoyl ethanolamide (DHEA), the ethanolamine conjugate of the n-3 long chain polyunsaturated fatty acid docosahexaenoic acid, is endogenously present in the human circulation and in tissues. Its immunomodulating properties have been (partly) attributed to an interaction with the cyclooxygenase-2 (COX-2) enzyme. Recently, we discovered that COX-2 converts DHEA into two oxygenated metabolites, 13- and 16-hydroxylated-DHEA (13- and 16-HDHEA, respectively).

View Article and Find Full Text PDF

Background & Aims: In chronic liver diseases, inflammation induces oxidative stress and thus may contribute to the progression of liver injury, fibrosis, and carcinogenesis. The KEAP1/NRF2 axis is a major regulator of cellular redox balance. In the present study, we investigated whether the KEAP1/NRF2 system is involved in liver disease progression in humans and mice.

View Article and Find Full Text PDF