Publications by authors named "M Uzan"

Quantum oscillations originating from the quantization of electron cyclotron orbits provide sensitive diagnostics of electron bands and interactions. We report on nanoscale imaging of the thermodynamic magnetization oscillations caused by the de Haas-van Alphen effect in moiré graphene. Scanning by means of superconducting quantum interference device (SQUID)-on-tip in Bernal bilayer graphene crystal axis-aligned to hexagonal boron nitride reveals large magnetization oscillations with amplitudes reaching 500 Bohr magneton per electron in weak magnetic fields, unexpectedly low frequencies, and high sensitivity to superlattice filling fraction.

View Article and Find Full Text PDF

The exceptional control of the electronic energy bands in atomically thin quantum materials has led to the discovery of several emergent phenomena. However, at present there is no versatile method for mapping the local band structure in advanced two-dimensional materials devices in which the active layer is commonly embedded in the insulating layers and metallic gates. Using a scanning superconducting quantum interference device, here we image the de Haas-van Alphen quantum oscillations in a model system, the Bernal-stacked trilayer graphene with dual gates, which shows several highly tunable bands.

View Article and Find Full Text PDF

Background: Gliomas have infiltrative nature and tumor volume has direct prognostic value. Optimal resection limits delineated by high-frequency monopolar stimulation with multipulse short train technique is still a matter of debate for safe surgery without (or with acceptable) neurological deficits. It is also an enigma whether the same cut-off values are valid for high and low grades.

View Article and Find Full Text PDF

Vitamin D receptor (VDR) is an essential transcription factor (TF) synthesized in different cell types. We hypothesized that VDR might also act as a mitochondrial TF. We conducted the experiments in primary cortical neurons, PC12, HEK293T, SH-SY5Y cell lines, human peripheral blood mononuclear cells (PBMC) and human brain.

View Article and Find Full Text PDF