Objective: Osteoarthritis (OA) is an age-related disease characterized by articular cartilage degeneration. It is largely heritable, and genetic screening has identified single-nucleotide polymorphisms (SNPs) marking genomic risk loci. One such locus is marked by the G>A SNP rs75621460, downstream of TGFB1.
View Article and Find Full Text PDFOsteoarthritis Cartilage
November 2020
Objective: In cartilage, the osteoarthritis (OA) associated single nucleotide polymorphism (SNP) rs11780978 correlates with differential expression of PLEC, and with differential methylation of PLEC CpG dinucleotides, forming eQTLs and mQTLs respectively. This implies that methylation links chondrocyte genotype and phenotype, thus driving the functional effect of this genetic risk signal. PLEC encodes plectin, a cytoskeletal protein that enables tissues to respond to mechanical forces.
View Article and Find Full Text PDFThe biological and medical aspects of magnetochemical effects in nanotherapy of tumors remain poorly studied. The present paper investigates the influence of nonlinear magnetochemical effects of anisotropic magnetic nanodots on an animal tumor model. The magnetic properties and electron spin resonance spectra of magnetic nanodots and doxorubicin were investigated after mechano-magnetochemical synthesis.
View Article and Find Full Text PDFThe paper aims to compare zeta potentials, magnetic properties, electron spin resonance, photoluminescence (PL) spectra and antitumor effect of magneto-mechano-chemically synthesized magneto-sensitive nanocomplexes loaded with the anticancer drug doxorubicin (DOXO) during nanotherapy of Walker-256 carcinosarcoma carried out by a magnetic resonance system. Diamagnetic DOXO acquired the properties of a paramagnetic substance after synthesis. MNC comprising superparamagnetic nanoparticles (NP) and DOXO had different g-factors, zeta potentials, a lower saturation magnetic moment, area of the hysteresis loop, and a higher coercivity compared to similar MNC with ferromagnetic NP.
View Article and Find Full Text PDFObjective: To identify methylation quantitative trait loci (mQTLs) correlating with osteoarthritis (OA) risk alleles and to undertake mechanistic characterization as a means of target gene prioritization.
Methods: We used genome-wide genotyping and cartilage DNA methylation array data in a discovery screen of novel OA risk loci. This was followed by methylation, gene expression analysis, and genotyping studies in additional cartilage samples, accompanied by in silico analyses.