The adipose tissue-derived hormone adiponectin improves insulin sensitivity and its circulating levels are decreased in obesity-induced insulin resistance. Here, we report the generation of a mouse line with a genomic disruption of the adiponectin locus. We aimed to identify whether these mice develop insulin resistance and which are the primary target tissues affected in this model.
View Article and Find Full Text PDFGhrelin, a stomach-derived orexigenic hormone, has stimulated great interest as a potential target for obesity control. Pharmacological evidence indicates that ghrelin's effects on food intake are mediated by neuropeptide Y (NPY) and agouti-related protein (AgRP) in the central nervous system. These include intracerebroventricular application of antibodies to neutralize NPY and AgRP, and the application of an NPY Y1 receptor antagonist, which blocks some of the orexigenic effects of ghrelin.
View Article and Find Full Text PDFSomatostatin (SRIF) regulates pancreatic insulin and glucagon secretion. In the present study we describe the generation of SRIF receptor subtype 5 knockout (sst(5) KO) mice to examine the role of SRIF receptor subtypes (sst) in regulating insulin secretion and glucose homeostasis. Mice deficient in sst(5) were viable, fertile, appeared healthy, and displayed no obvious phenotypic abnormalities.
View Article and Find Full Text PDFAgouti-related protein (AgRP), a neuropeptide abundantly expressed in the arcuate nucleus of the hypothalamus, potently stimulates feeding and body weight gain in rodents. AgRP is believed to exert its effects through the blockade of signaling by alpha-melanocyte-stimulating hormone at central nervous system (CNS) melanocortin-3 receptor (Mc3r) and Mc4r. We generated AgRP-deficient (Agrp(-/-)) mice to examine the physiological role of AgRP.
View Article and Find Full Text PDFTo differentiate multiple activities of presenilin 1 (PS1), we generated transgenic mice expressing two human PS1 alleles: one with the aspartate to alanine mutation at residue 257 (hPS1D257A) that impairs the proteolytic activity of PS1, and the other deleting amino acids 340-371 of the hydrophilic loop sequence (hPS1Deltacat) essential for beta-catenin interaction. We show here that although hPS1Deltacat is fully competent in rescuing the PS1-null lethal phenotype, hPS1D257A does not exhibit developmental activity. hPS1D257A also leads to the concurrent loss of the proteolytic processing of Notch and beta-amyloid precursor protein (APP) and the generation of beta-amyloid peptides (Abeta).
View Article and Find Full Text PDF