Babesia bovis is a causal agent of bovine babesiosis, a disease which leads to mortality and morbidity and impacts the cattle industry worldwide. We amplified, cloned and sequenced the B. bovis merozoite surface antigen-2b (msa-2b) gene (940 bp) and the near full-length 18S rRNA gene (1600 bp) from cattle samples from South Africa and Mozambique to determine sequence variation between B.
View Article and Find Full Text PDFTicks and tick-borne diseases (TBDs) significantly affect cattle production and the livelihoods of communities in pastoralist areas. Data on protozoan and rickettsial pathogens in ticks infesting cattle in Uganda is scanty; while it is an indicator of the likelihood of disease transmission and occurrence. A cross-sectional study was conducted amongst cattle in the Karamoja Region, northeastern Uganda, from July through September 2017, to determine the tick species diversity, identify protozoan and rickettsial pathogens in the ticks, and characterise pathogenic species by sequence and phylogenetic analyses.
View Article and Find Full Text PDFThe two black rhinoceros subspecies (Diceros bicornis bicornis and D. b. minor) in South African conservation areas are managed as separate metapopulations.
View Article and Find Full Text PDFBabesia bigemina is one of the aetiological agents of bovine babesiosis, which causes economic losses through mortality, loss of production and control costs. Effective means of detecting and quantifying B. bigemina in cattle populations is therefore important to inform control approaches.
View Article and Find Full Text PDFPurpose: Light microscopic manual count is the current gold standard for parasite quantification. The ability to determine parasite density in whole blood is crucial to understanding disease pathogenesis and finding a suitable automated method of Babesia rossi parasite quantification would facilitate higher throughput and provide results that are more objective. This study investigated both peripheral capillary and central venous whole blood to estimate the correlations between light microscopy, flow cytometry and quantitative real-time polymerase chain reaction (qPCR).
View Article and Find Full Text PDF