The European project OFFICAIR aimed to broaden the existing knowledge regarding indoor air quality (IAQ) in modern office buildings, i.e., recently built or refurbished buildings.
View Article and Find Full Text PDFSci Total Environ
December 2015
In the framework of the EU EPHECT project (Emissions, Exposure Patterns and Health Effects of Consumer Products in the EU), irritative and respiratory effects were assessed in relation to acute (30-min) and long-term (24-h) inhalation exposure to key and emerging indoor air pollutants emitted during household use of selected consumer products. A detailed Health Risk Assessment (HRA) was performed for five selected pollutants of respiratory health relevance, namely acrolein, formaldehyde, naphthalene, d-limonene and α-pinene. For each pollutant, the Critical Exposure Limit (CEL) was compared to indoor air concentrations and exposure estimates for the use of 15 selected consumer products by two population groups (housekeepers and retired people) in the four geographical regions of Europe (North, West, South, East), which were derived previously based on microenvironmental modelling.
View Article and Find Full Text PDFWithin the framework of the EPHECT project (Emissions, exposure patterns and health effects of consumer products in the EU), irritative and respiratory health effects were assessed in relation to acute and long-term exposure to key and emerging indoor air pollutants emitted during household use of selected consumer products. In this context, inhalation exposure assessment was carried out for six selected 'target' compounds (acrolein, formaldehyde, benzene, naphthalene, d-limonene and α-pinene). This paper presents the methodology and the outcomes from the micro-environmental modelling of the 'target' pollutants following single or multiple use of selected consumer products and the subsequent exposure assessment.
View Article and Find Full Text PDFCleaning agents often emit terpenes that react rapidly with ozone. These ozone-initiated reactions, which occur in the gas-phase and on surfaces, produce a host of gaseous and particulate oxygenated compounds with possible adverse health effects in the eyes and airways. Within the European Union (EU) project OFFICAIR, common ozone-initiated reaction products were measured before and after the replacement of the regular floor cleaning agent with a preselected low emitting floor cleaning agent in four offices located in four EU countries.
View Article and Find Full Text PDF