Osteogenesis Imperfecta (OI) is a heterogeneous genetic disorder characterized by bone fragility and fracture. Mutations in 20 distinct genes can cause OI, and therefore, the genetic diagnosis of OI is frequently difficult to obtain because of the great number of genes that can be related with this disease. Studies that report the most frequently mutated genes in OI patients can help to improve molecular strategies for diagnosis of the disease.
View Article and Find Full Text PDFGenome-wide association studies (GWAS) have associated several genetic variants with late-onset Alzheimer's disease (LOAD), a neurodegenerative disease. Among those, rs3764650 ABCA7, rs6656401 CR1, and rs744373 BIN1 were associated as risk factors for LOAD, while rs11136000 CLU and rs610932 MS4A6A were protective. Recently, several case-control studies have investigated the association of these polymorphisms with AD.
View Article and Find Full Text PDFLate-onset Alzheimer's disease (LOAD) is a multifactorial neurodegenerative disorder that corresponds to most Alzheimer's disease (AD) cases. Inflammation is frequently related to AD, whereas microglial cells are the major phagocytes in the brain and mediate the removal of Aβ peptides. Microglial cell dsyregulation might contribute to the formation of amyloid plaques, a hallmark of AD.
View Article and Find Full Text PDFOsteogenesis imperfecta (OI) is a heterogeneous disorder that causes fragility, deformity, and fractures in bones. A large number of genes that are associated with the disease have been identified in the last decade; this makes the genetic diagnosis of OI more difficult. To improve our knowledge of the genetic mutation profile in OI we used single-stranded conformation polymorphism screening and automated sequencing to investigate the SERPINH1, FKBP10, and SERPINF1 genes, which are related to recessive OI, in 23 unrelated Brazilian patients.
View Article and Find Full Text PDFOsteogenesis imperfecta (OI) is a genetic disease characterized by bone deformities and fractures. Most cases are caused by autosomal dominant mutations in the type I collagen genes COL1A1 and COL1A2; however, an increasing number of recessive mutations in other genes have been reported. The LEPRE1, CRTAP, and PPIB genes encode proteins that form the P3H1/CRTAP/CypB complex, which is responsible for posttranslational modifications of type I collagen.
View Article and Find Full Text PDF