It is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-high perceptual acuity exhibited by humans in pure-tone frequency discrimination.
View Article and Find Full Text PDFWe present original results and review literature from the past fifty years that address the role of primate auditory cortex in the following perceptual capacities: (1) the ability to perceive small differences between the pitches of two successive tones; (2) the ability to perceive the sign (i.e., direction) of the pitch difference [higher (+) vs.
View Article and Find Full Text PDFPsychophysical experiments were carried out in a rare case involving a 48 year old man (RJC) with a small traumatic hemorrhage of the right dorsal midbrain, including the inferior colliculus (IC). RJC had normal audiograms bilaterally, but there was a marked decrease in wave V amplitude on click-evoked brainstem auditory evoked potentials following left ear stimulation. RJC demonstrated a deficit in sound localization identification when the loudspeakers lay within the auditory hemifield contralateral to his IC lesion.
View Article and Find Full Text PDFMicroelectrode studies in nonhuman primates and other mammals have demonstrated that many neurons in auditory cortex are excited by pure tone stimulation only when the tone's frequency lies within a narrow range of the audible spectrum. However, the effects of auditory cortex lesions in animals and humans have been interpreted as evidence against the notion that neuronal frequency selectivity is functionally relevant to frequency discrimination. Here we report psychophysical and anatomical evidence in favor of the hypothesis that fine-grained frequency resolution at the perceptual level relies on neuronal frequency selectivity in auditory cortex.
View Article and Find Full Text PDFPatients with right parietal damage demonstrate a variety of attentional deficits in their left visual field contralateral to their lesion. We now report that patients with right lesions also show a severe loss in the perception of apparent motion in their "good" right visual field ipsilateral to their lesion. Three tests of attention were conducted, and losses were found only in the contralesional fields for a selective attention and a multiple object tracking task.
View Article and Find Full Text PDF