Understanding the adsorption behavior of base probes in aluminosilicates and its relationship to the intrinsic acidity of Brønsted acid sites (BAS) is essential for the catalytic applications of these materials. In this study, we investigated the adsorption properties of base probe molecules with varying proton affinities (acetonitrile, acetone, formamide, and ammonia) within six different aluminosilicate frameworks (FAU, CHA, IFR, MOR, FER, and TON). An important objective was to propose a robust criterion for evaluating the intrinsic BAS acidity (i.
View Article and Find Full Text PDFAcid forms of zeolites have been used in industry for several decades but scaling the strength of their acid centers is still an unresolved and intensely debated issue. In this paper, the Brønsted acidity strength in aluminosilicates measured by their deprotonation energy (DPE) was investigated for FAU, CHA, IFR, MOR, FER, MFI, and TON zeolites by means of periodic and cluster calculations at the density functional theory (DFT) level. The main drawback of the periodic DFT is that it does not provide reliable absolute values due to spurious errors associated with the background charge introduced in anion energy calculations.
View Article and Find Full Text PDFStructures of purely siliceous materials in the International Zeolite Association database were investigated with four different theoretical methods ranging from the empirical approaches, such as the distance least squares and force fields to the computationally demanding dispersion-corrected density functional theory method employing the generalized gradient approximation-type functional. The structural characteristics were first evaluated for dense silica polymorphs, for which reliable low-temperature experiments are available. Due to the significant errors in experimentally determined atomic positions of siliceous zeolites, lattice parameters and the cell volume were proposed as reliable descriptors for the structural assessment of zeolite frameworks.
View Article and Find Full Text PDFPhys Chem Chem Phys
June 2017
Physical adsorption of methane in purely siliceous molecular sieves prepared by a recently discovered synthetic pathway using 2D zeolites as nanoscale building blocks has been investigated by means of combined experimental and theoretical approaches. The DFT/CC-based method has been tested on ADOR zeolites of the UTL family and a few experimentally well-characterized siliceous zeolites. Excellent agreement between theoretical and experimental heats of adsorption has been found for OKO, PCR, MFI, CHA and AEI zeolites.
View Article and Find Full Text PDFThe assembly-disassembly-organization-reassembly (ADOR) process has been used to disassemble a parent zeolite with the UOV structure type and then reassemble the resulting layers into a novel structure, IPC-12. The structure of the material has previously been predicted computationally and confirmed in our experiments using X-ray diffraction and atomic resolution STEM-HAADF electron microscopy. This is the first successful application of the ADOR process to a material with porous layers.
View Article and Find Full Text PDF