Rev Sci Instrum
November 2024
Runaway electrons, accelerated in a tokamak discharge to high energies (tens of MeV), can cause serious damage to plasma facing components. Therefore, it is important to develop effective mitigation strategies to reduce the risk of tokamak damage. To study the effects of various mitigation strategies, a dedicated diagnostic, the calorimetry probe, was developed at the COMPASS tokamak.
View Article and Find Full Text PDFThe Thomson scattering (TS) diagnostic, one of the key diagnostics used on the tokamaks around the world, is planned for the COMPASS-U tokamak, which is recently under design and construction in the Institute of Plasma Physics in Prague, Czech Republic. This tokamak is supposed to be a world-unique, high magnetic field device with hot walls, allowing for the study of the plasma exhaust in advanced operational scenarios and testing cutting-edge technologies relevant to future fusion reactors, e.g.
View Article and Find Full Text PDFThis contribution presents a Thomson scattering module developed for the Raysect and Cherab framework. Detailed models of spectroscopic diagnostic systems can be created in the framework, which deliver synthetic data with high precision due to accurate physical treatment of ray propagation and radiation phenomena. The addition of the presented module will allow us to model Thomson scattering systems that can aid both data validation and design.
View Article and Find Full Text PDFThis database study assesses the misclassification of death reports for 2 medical devices within the US Food and Drug Administration’s Manufacturer and User Facility Device Experience database.
View Article and Find Full Text PDF