Nontuberculous mycobacteria (NTM) identification is essential for establishing the relevance of the isolate and for appropriate antimicrobial therapy. Traditionally, NTM identification is performed by using Line Probe Assays (LPA), a costly and time-consuming technique requiring trained personnel. MALDI-TOF MS is a promising tool for NTM identification, and its use is rapidly growing.
View Article and Find Full Text PDFThe present study was designed to characterize six Trueperella (T.) abortisuis strains, cultured over a period of 5 months from fetus and abortion material of six pigs of a single farm in Mecklenburg-West Pomerania federal state, Germany. It was of interest to investigate the epidemiological relationships of the six strains among each other and whether a single bacterial clone was responsible for the abortion situation of the single farm.
View Article and Find Full Text PDFThe Bruker MALDI Biotyper method utilizes matrix-assisted laser desorption/ionization time-of-flight MS for the rapid and accurate identification and confirmation of Gram-negative bacteria from select media types. The alternative method was evaluated in a method extension study of AOAC INTERNATIONAL 2017.09 using nonselective and selective agars to identify spp.
View Article and Find Full Text PDFAccurate and timely mycobacterial species identification is imperative for successful diagnosis, treatment, and management of disease caused by nontuberculous mycobacteria (NTM). The current most widely utilized method for NTM species identification is Sanger sequencing of one or more genomic loci, followed by BLAST sequence analysis. MALDI-TOF MS offers a less expensive and increasingly accurate alternative to sequencing, but the commercially available assays used in clinical mycobacteriology cannot differentiate between and , two closely related potentially pathogenic species of NTM that are members of the complex (MAC).
View Article and Find Full Text PDFThe Bruker MALDI Biotyper® method utilizes matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS for the rapid and accurate confirmation and identification of Gram-positive bacteria from select media types. This alternative method was evaluated using nonselective and selective agar plates to identify and confirm Listeria monocytogenes, Listeria species, and select Gram-positive bacteria. Results obtained by the Bruker MALDI Biotyper were compared with the traditional biochemical methods as prescribed in the appropriate reference method standards.
View Article and Find Full Text PDF