Publications by authors named "M Teresa Miras-Portugal"

During the establishment of neuronal circuits, axons and dendrites grow and branch to establish specific synaptic connections. This complex process is highly regulated by positive and negative extracellular cues guiding the axons and dendrites. Our group was pioneer in describing that one of these signals are the extracellular purines.

View Article and Find Full Text PDF

For the past three decades, our laboratory has conducted pioneering research to elucidate the complexity of purinergic signaling in the CNS, alone and in collaboration with other groups, inspired by the ground-breaking efforts of Geoffrey Burnstock. This review summarizes our contribution to understand the nucleotide receptor signaling in the CNS with a special focus on the P2X7 receptor.

View Article and Find Full Text PDF

Endothelial cells and astrocytes preferentially express metabotropic P2Y nucleotide receptors, which are involved in the maintenance of vascular and neural function. Among these, P2Y and P2Y receptors appear as main actors, since their stimulation induces intracellular calcium mobilization and activates signaling cascades linked to cytoskeletal reorganization. In the present work, we have analyzed, by means of atomic force microscopy (AFM) in force spectroscopy mode, the mechanical response of human umbilical vein endothelial cells (HUVEC) and astrocytes upon 2MeSADP and UTP stimulation.

View Article and Find Full Text PDF

The purinergic system is one of the oldest cell-to-cell communication mechanisms and exhibits relevant functions in the regulation of the central nervous system (CNS) development. Amongst the components of the purinergic system, the ionotropic P2X7 receptor (P2X7R) stands out as a potential regulator of brain pathology and physiology. Thus, P2X7R is known to regulate crucial aspects of neuronal cell biology, including axonal elongation, path-finding, synapse formation and neuroprotection.

View Article and Find Full Text PDF

Little is known about the intrinsic specification of postnatal cerebellar neural stem cells (NSCs) and to what extent they depend on information from their local niche. Here, we have used an adapted cell preparation of isolated postnatal NSCs and live imaging to demonstrate that cerebellar progenitors maintain their neurogenic nature by displaying hallmarks of NSCs. Furthermore, by using this preparation, all the cell types produced postnatally in the cerebellum, in similar relative proportions to those observed in vivo, can be monitored.

View Article and Find Full Text PDF