Publications by authors named "M Tence"

Four-dimensional scanning transmission electron microscopy (4D-STEM) offers an attractive approach to simultaneously obtain precise structural determinations and capture details of local electric fields and charge densities. However, accurately extracting quantitative data at the atomic scale poses challenges, primarily due to probe propagation and size-related effects, which may even lead to misinterpretations of qualitative effects. In this study, we present a comprehensive analysis of electric fields and charge densities in both pristine and defective h-BN flakes.

View Article and Find Full Text PDF

Direct electron detection is currently revolutionizing many fields of electron microscopy due to its lower noise, its reduced point-spread function, and its increased quantum efficiency. More specifically to this work, Timepix3 is a hybrid-pixel direct electron detector capable of outputting temporal information of individual hits in its pixel array. Its architecture results in a data-driven detector, also called event-based, in which individual hits trigger the data off the chip for readout as fast as possible.

View Article and Find Full Text PDF

The synergy between free electrons and light has recently been leveraged to reach an impressive degree of simultaneous spatial and spectral resolution, enabling applications in microscopy and quantum optics. However, the required combination of electron optics and light injection into the spectrally narrow modes of arbitrary specimens remains a challenge. Here, we demonstrate microelectronvolt spectral resolution with a sub-nanometer probe of photonic modes with quality factors as high as 10.

View Article and Find Full Text PDF

Following optical excitations' life span from creation to decay into photons is crucial in understanding materials photophysics. Macroscopically, this is studied using optical techniques, such as photoluminescence excitation spectroscopy. However, excitation and emission pathways can vary at nanometer scales, preventing direct access, as no characterization technique has the relevant spatial, spectral, and time resolution.

View Article and Find Full Text PDF

The acquisition of a hyperspectral image is nowadays a standard technique used in the scanning transmission electron microscope. It relates the spatial position of the electron probe to the spectral data associated with it. In the case of electron energy loss spectroscopy (EELS), frame-based hyperspectral acquisition is much slower than the achievable rastering time of the scan unit (SU), which sometimes leads to undesirable effects in the sample, such as electron irradiation damage, that goes unperceived during frame acquisition.

View Article and Find Full Text PDF