Publications by authors named "M Teillet"

Hematopoietic stem cells (HSCs) are produced by a small cohort of hemogenic endothelial cells (ECs) during development through the formation of intra-aortic hematopoietic cell (HC) clusters. The Runx1 transcription factor plays a key role in the EC-to-HC and -HSC transition. We show that Runx1 expression in hemogenic ECs and the subsequent initiation of HC formation are tightly controlled by the subaortic mesenchyme, although the mesenchyme is not a source of HCs.

View Article and Find Full Text PDF

Since the era of the ancient Egyptians and Greeks, the avian embryo has been a subject of intense interest to visualize the first steps of development. It has served as a pioneer model to scrutinize the question of hematopoietic development from the beginning of the 20th century. It's large size and easy accessibility have permitted the development of techniques dedicated to following the origins and fates of different cell populations.

View Article and Find Full Text PDF

Vertebrate embryo somite formation is temporally controlled by the cyclic expression of somitogenesis clock genes in the presomitic mesoderm (PSM). The somitogenesis clock is believed to be an intrinsic property of this tissue, operating independently of embryonic midline structures and the signaling molecules produced therein, namely Sonic hedgehog (Shh). This work revisits the notochord signaling contribution to temporal control of PSM segmentation by assessing the rate and number of somites formed and somitogenesis molecular clock gene expression oscillations upon notochord ablation.

View Article and Find Full Text PDF

Imaging has always been a part of dental implant procedures from its beginning. Initially, imaging was performed by dentists. The introduction of CT scan at the end of the seventies was revolutionary.

View Article and Find Full Text PDF

Neural crest cells (NCCs) arising from trunk neural tube (NT) during primary and secondary neurulation give rise to melanocytes, glia and neurons, except for those in the caudal-most region during secondary neurulation (somites 47 to 53 in the chick embryo), from which no neurons are formed, either in vivo or in vitro. To elucidate this discrepancy, we have specifically analyzed caudal-most NCC ontogeny. In this region, NCCs emerge at E5/HH26, one day after full cavitation of the NT and differentiation of flanking somites.

View Article and Find Full Text PDF