Progressive loss of tissue homeostasis is a hallmark of numerous age-related pathologies, including osteoarthritis (OA). Accumulation of senescent chondrocytes in joints contributes to the age-dependent cartilage loss of functions through the production of hypertrophy-associated catabolic matrix-remodeling enzymes and pro-inflammatory cytokines. Here, we evaluated the effects of the secreted variant of the anti-aging hormone α-Klotho on cartilage homeostasis during both cartilage formation and OA development.
View Article and Find Full Text PDFAsymmetric division (AD) is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown.
View Article and Find Full Text PDFAutosomal-recessive optic neuropathies are rare blinding conditions related to retinal ganglion cell (RGC) and optic-nerve degeneration, for which only mutations in TMEM126A and ACO2 are known. In four families with early-onset recessive optic neuropathy, we identified mutations in RTN4IP1, which encodes a mitochondrial ubiquinol oxydo-reductase. RTN4IP1 is a partner of RTN4 (also known as NOGO), and its ortholog Rad8 in C.
View Article and Find Full Text PDFBackground: There is growing evidence that microglia are key players in the pathological process of amyotrophic lateral sclerosis (ALS). It is suggested that microglia have a dual role in motoneurone degeneration through the release of both neuroprotective and neurotoxic factors.
Results: To identify candidate genes that may be involved in ALS pathology we have analysed at early symptomatic age (P90), the molecular signature of microglia from the lumbar region of the spinal cord of hSOD1(G93A) mice, the most widely used animal model of ALS.
The proliferation and differentiation of neural stem cells are tightly controlled by intrinsic and extrinsic cues. Cell adhesion molecules are increasingly recognized as regulators of these processes. Here we report the expression of the olfactory cell adhesion molecule (OCAM/NCAM2/RNCAM) during mouse spinal cord development and in neural stem cells cultured as neurospheres.
View Article and Find Full Text PDF