Publications by authors named "M Tavecchio"

Hepatocellular carcinoma (HCC), commonly diagnosed at an advanced stage, is the most common primary liver cancer. Owing to a lack of effective HCC treatments and the commonly acquired chemoresistance, novel therapies need to be investigated. Cyclophilins-intracellular proteins with peptidyl-prolyl isomerase activity-have been shown to play a key role in therapy resistance and cell proliferation.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC), the most common primary liver cancer, is usually diagnosed in its late state. Tyrosine kinase inhibitors such as sorafenib and regorafenib are one of the few treatment options approved for advanced HCC and only prolong the patient's life expectancy by a few months. Therefore, there is a need for novel effective treatments.

View Article and Find Full Text PDF

Mutant forms of p53 protein often possess protumorigenic functions, conferring increased survival and migration to tumor cells via their "gain-of-function" activity. Whether and how a common polymorphism in at amino acid 72 (Pro72Arg; referred to here as P72 and R72) impacts this gain of function has not been determined. We show that mutant p53 enhances migration and metastasis of tumors through the ability to bind and regulate PGC-1α and that this regulation is markedly impacted by the codon 72 polymorphism.

View Article and Find Full Text PDF

Protein homeostasis, or proteostasis, is required for mitochondrial function, but its role in cancer is controversial. Here we show that transgenic mice expressing the mitochondrial chaperone TNFR-associated protein 1 (TRAP1) in the prostate develop epithelial hyperplasia and cellular atypia. When examined on a Pten background, a common alteration in human prostate cancer, TRAP1 transgenic mice showed accelerated incidence of invasive prostatic adenocarcinoma, characterized by increased cell proliferation and reduced apoptosis, in situ Conversely, homozygous deletion of TRAP1 delays prostatic tumorigenesis in Pten mice without affecting hyperplasia or prostatic intraepithelial neoplasia.

View Article and Find Full Text PDF

Cyclophilin D (CypD) is a mitochondrial matrix protein implicated in cell death, but a potential role in bioenergetics is not understood. Here, we show that loss or depletion of CypD in cell lines and mice induces defects in mitochondrial bioenergetics due to impaired fatty acid β-oxidation. In turn, CypD loss triggers a global compensatory shift towards glycolysis, with transcriptional upregulation of effectors of glucose metabolism, increased glucose consumption and higher ATP production.

View Article and Find Full Text PDF