This paper presents a method based on particle swarm optimization (PSO) for optimizing the power settings of unmanned aerial vehicle (UAVs) along a given trajectory in order to minimize fuel consumption and maximize autonomy during surveillance missions. UAVs are widely used in surveillance missions and their autonomy is a key characteristic that contributes to their success. Providing a way to reduce fuel consumption and increase autonomy provides a significant advantage during the mission.
View Article and Find Full Text PDFThis paper proposes a framework for the wireless sensor data acquisition using a team of Unmanned Aerial Vehicles (UAVs). Scattered over a terrain, the sensors detect information about their surroundings and can transmit this information wirelessly over a short range. With no access to a terrestrial or satellite communication network to relay the information to, UAVs are used to visit the sensors and collect the data.
View Article and Find Full Text PDFRecently, the combination of sliding mode and fuzzy logic techniques has emerged as a promising methodology for dealing with nonlinear, uncertain, dynamical systems. In this paper, a sliding mode control algorithm combined with a fuzzy control scheme is developed for the trajectory control of a command guidance system. The acceleration command input is mathematically derived.
View Article and Find Full Text PDF