A number of in vitro test methods using Reconstructed human Tissues (RhT) are regulatory accepted for evaluation of skin corrosion/irritation. In such methods, test chemical corrosion/irritation potential is determined by measuring tissue viability using the photometric MTT-reduction assay. A known limitation of this assay is possible interference of strongly coloured test chemicals with measurement of formazan by absorbance (OD).
View Article and Find Full Text PDFThe need for non-animal data to assess skin sensitisation properties of substances, especially cosmetics ingredients, has spawned the development of many in vitro methods. As it is widely believed that no single method can provide a solution, the Cosmetics Europe Skin Tolerance Task Force has defined a three-phase framework for the development of a non-animal testing strategy for skin sensitization potency prediction. The results of the first phase – systematic evaluation of 16 test methods – are presented here.
View Article and Find Full Text PDFAlthough adoption of skin sensitization in vivo assays for hazard identification is likely to be successful in the next few years, this does not replace their use in potency prediction. Notably, measurement of potency of skin sensitizers in the local lymph node assay has been important. However, this local lymph node assay potency measure has not been formally assessed against a range of substances of known human sensitizing potential, because the latter is lacking.
View Article and Find Full Text PDFFor more than two decades, scientists have been trying to replace the regulatory in vivo Draize eye test by in vitro methods, but so far only partial replacement has been achieved. In order to better understand the reasons for this, historical in vivo rabbit data were analysed in detail and resampled with the purpose of (1) revealing which of the in vivo endpoints are most important in driving United Nations Globally Harmonized System/European Union Regulation on Classification, Labelling and Packaging (UN GHS/EU CLP) classification for serious eye damage/eye irritation and (2) evaluating the method's within-test variability for proposing acceptable and justifiable target values of sensitivity and specificity for alternative methods and their combinations in testing strategies. Among the Cat 1 chemicals evaluated, 36-65 % (depending on the database) were classified based only on persistence of effects, with the remaining being classified mostly based on severe corneal effects.
View Article and Find Full Text PDFCosmetics Europe, The Personal Care Association, known as Colipa before 2012, conducted a program of technology transfer and assessment of Within/Between Laboratory (WLV/BLV) reproducibility of the SkinEthic™ Reconstituted Human Corneal Epithelium (HCE) as one of two human reconstructed tissue eye irritation test methods. The SkinEthic™ HCE test method involves two exposure time treatment procedures - one for short time exposure (10 min - SE) and the other for long time exposure (60 min - LE) of tissues to test substance. This paper describes pre-validation studies of the SkinEthic™ HCE test method (SE and LE protocols) as well as the Eye Peptide Reactivity Assay (EPRA).
View Article and Find Full Text PDF