Polyaniline (PANI) waspolymerized on nanofibrous polycaprolactone mats as cell-free antioxidant cardiac patches (CPs), providing electrical conductivity and antioxidant properties. The fabricated CPs took advantage of intrinsic and additive antioxidant properties in the presence of PANI backbone and ascorbic acid as a biocompatible dopant of PANI. The antioxidant nature of CPs may reduce the serious repercussions of oxidative stress, produced during the ischemia-reperfusion (I/R) process following myocardial infarction.
View Article and Find Full Text PDFRegulation of mesenchymal stem cell (MSC) fate for targeted cell therapy applications has been a subject of interest, particularly for tissues such as tendons that possess a marginal regenerative capacity. Control of MSCs' fate into the tendon-specific lineage has mainly been achieved by implementation of chemical growth factors. Mechanical stimuli or 3-dimensional (D) scaffolds have been used as an additional tool for the differentiation of MSCs into tenocytes, but oftentimes, they require a sophisticated bioreactor or a complex scaffold fabrication technique which reduces the feasibility of the proposed method to be used in practice.
View Article and Find Full Text PDFAims: The process of Epithelial-to-mesenchymal transition (EMT) as a phenotypic invasive shift and the factors affecting it, are under extensive research. Application of supernatants of human adipose-derived mesenchymal stem cells (hADMSCs) on non-invasive cancer cells is a well known method of in vitro induction of EMT like process. While previous researches have focused on the effects of hADMSCs supernatant on the biochemical signaling pathways of the cells through expression of different proteins and genes, we investigated pro-carcinogic alterations of physico-mechanical cues in terms of changes in cell motility and aggregated formation in 3D microenvironments, and cytoskeletal actin-myosin content and fiber arrangement.
View Article and Find Full Text PDFCancer development comprehends changes in cell structural and physical states. Cancer cells are softer than normal cells, produce higher contractile forces, and migrate more easily. While chemotherapy, targets proteins involved in biological behaviors, it may affect cell physicomechanical state due to the interconnections among signaling pathways.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
October 2021
The function of biological tissues in health and disease is regulated at cellular level and is highly influenced by the physical microenvironment, through the interaction of forces between cells and ECM, which are perceived through mechanosensing pathways. In cancer, both chemical and physical signaling cascades and their interactions are involved during cell-cell and cell-ECM communications to meet requirements of tumor growth. Among stroma cells, cancer associated fibroblasts (CAFs) play key role in tumor growth and pave the way for cancer cells to initiate metastasis and invasion to other tissues, and without recruitment of CAFs, the process of cancer invasion is dysfunctional.
View Article and Find Full Text PDF