J Genet Eng Biotechnol
April 2021
Background: Cellulose is the primary component of the plant cell wall and an important source of energy for the ruminant and microbial protein synthesis in the rumen. Cell wall content is digested by anaerobic fermentation activity mainly of bacteria belonging to species Fibrobacter succinogenes, Ruminicoccus albus, Ruminococcus flavefaciens, and Butyrivibrio fibrisolvens. Bacteria belonging to the species Ruminococcus albus contain cellulosomes that enable it to adhere to and digest cellulose, and its genome encodes cellulases and hemicellulases.
View Article and Find Full Text PDFRumen health is of vital importance in ensuring healthy and efficient dairy cattle production. Current feeding programs for cattle recommend concentrate-rich diets to meet the high nutritional needs of cows during lactation and enhance cost-efficiency. These diets, however, can impair rumen health.
View Article and Find Full Text PDFHighly fermentable diets require the inclusion of adequate amounts of fiber to reduce the risk of subacute rumen acidosis (SARA). To assess the adequacy of dietary fiber in dairy cattle, the concept of physically effective neutral detergent fiber (peNDF) has received increasing attention because it amalgamates information on both chemical fiber content and particle size (PS) of the feedstuffs. The nutritional effects of dietary PS and peNDF are complex and involve feed intake behavior (absolute intake and sorting behavior), ruminal mat formation, rumination and salivation, and ruminal motility.
View Article and Find Full Text PDFObjectives: Nutrients passing the ileum induce mechanisms regulating pancreatic secretion, but the effect of short-chain fatty acids (SCFAs) present in the ileum because of either intestinal fermentation or due to the cecoileal reflux is still unclear. This study investigated the effect of ileal SCFAs on pancreatic secretion and plasma levels of peptide YY, cholecystokinin, motilin, and neurotensin.
Methods: The pigs were fitted with pancreatic duct, ileal, and jugular vein catheters, and a duodenal T-shaped cannula.
The study evaluated the effects of three different theoretical particle lengths (TPL) of grass silage on the distribution of particle fractions of the diet and the resulting effects on fermentation profile and concentrations of protozoa and mixed bacterial mass in the rumen of three lactating Holstein cows fed total mixed rations (45% grass silage, 5% grass hay and 50% concentrate) ad libitum. Decreasing TPL of grass silage (long, medium, short) reduced particles retained on the 19-mm sieve of the Penn State Particle Separator, while particle fractions from 8 mm to 19 mm and smaller than 8 mm were increased. Different TPL did not affect pH and the concentration of volatile fatty acids in the rumen.
View Article and Find Full Text PDF