RNA interference has been a heavily utilized tool for reverse genetic analysis for two decades. In adult mosquitoes, double-stranded RNA (dsRNA) administration has been accomplished primarily via injection, which requires significant time and is not suitable for field applications. To overcome these limitations, here we present a more efficient method for robust activation of RNAi by oral delivery of dsRNA to adult Anopheles gambiae.
View Article and Find Full Text PDFRNA interference (RNAi) is a powerful mechanism that can be exploited not only for physiology research but also for designing insect pest management approaches. Some insects cause harm by vectoring diseases dangerous to humans, livestock, or plants or by damaging crops. For at least a decade now, different insect control strategies that induce RNAi by delivering double stranded RNA (dsRNA) targeting essential genes have been proposed.
View Article and Find Full Text PDFMosquitoes are the greatest animal threat to human health, causing hundreds of millions of infections and around 1 million deaths each year. All mosquito-borne pathogens must traverse the salivary glands (SGs) to be transmitted to the next host, making this organ an ideal target for interventions. The adult SG develops from precursor cells located in the larval SG duct bud.
View Article and Find Full Text PDFRibosome Inactivating Proteins (RIPs) are RNA N-glycosidases that depurinate a specific adenine residue in the conserved sarcin/ricin loop of the 28S rRNA. The occurrence of RIP genes has been described in a wide range of plant taxa, as well as in several species of bacteria and fungi. A remarkable case is the presence of these genes in metazoans belonging to the Culicinae subfamily.
View Article and Find Full Text PDF