Prostate cancer is the second leading cause of malignancy-related deaths among American men. Active surveillance is a safe option for many men with less aggressive disease, yet definitively determining low-risk cancer is challenging with biopsy alone. Herein, we sought to identify prostate-derived microRNAs in patient sera and serum extracellular vesicles, and determine if those microRNAs improve upon the current clinical risk calculators for prostate cancer prognosis before and after biopsy.
View Article and Find Full Text PDFProstate cancer is the second leading cause of malignancy-related deaths among American men. Active surveillance is a safe option for many men with less aggressive disease, yet definitively determining low-risk cancer is challenging with biopsy alone. Herein, we sought to identify prostate-derived microRNAs in patient sera and serum extracellular vesicles, and determine if those microRNAs improve upon the current clinical risk calculators for prostate cancer prognosis before and after biopsy.
View Article and Find Full Text PDFBackground: The metabolism of normal prostate relies on glycolysis, with prostate cancer having reduced glycolysis and increased aerobic metabolism. Advanced glycation end products (AGEs) accumulate in tissues as a result of age and glycolytic rate. Differential AGE levels were recently observed in prostate cancer tissues.
View Article and Find Full Text PDFCurr Opin Endocr Metab Res
February 2020
MicroRNAs are known to be dysregulated in prostate cancer. These small noncoding RNAs can function as biomarkers and are involved in the biology of prostate cancer. The canonical mechanism for microRNAs is post-transcription regulation of gene expression via binding to the 3' untranslated region of mRNAs, resulting in RNA degradation and/or translational repression.
View Article and Find Full Text PDF