Publications by authors named "M T Yuk"

High-sensitivity C-reactive protein (hsCRP) is a representative biomarker of systemic inflammation and is associated with numerous chronic diseases. To explore the biological pathways and functions underlying chronic inflammation, we conducted a genome-wide association study (GWAS) and several post-GWAS analyses of the hsCRP levels. This study was performed on data from 71,019 Koreans and is one of the largest East Asian studies.

View Article and Find Full Text PDF
Article Synopsis
  • The study utilized core genome single-nucleotide polymorphism (SNP) phylogeny to analyze a nosocomial outbreak of Vancomycin-resistant Enterococcus faecium (VREf), correctly identifying most related isolates as part of the outbreak cluster.
  • Fourier-transform infrared (FT-IR) spectroscopy was effective in classifying the majority of these isolates and distinguishing unrelated samples, demonstrating its potential as a rapid screening tool for outbreak investigations.
  • This is the inaugural research focusing on FT-IR spectroscopy's effectiveness in epidemiological analysis of VREf isolates sharing the same sequence type, marking a novel approach in microbiology.
View Article and Find Full Text PDF

Hidden hearing loss (HHL), a recently described auditory neuropathy characterized by normal audiometric thresholds but reduced sound-evoked cochlear compound action potentials, has been proposed to contribute to hearing difficulty in noisy environments in people with normal hearing thresholds and has become a widespread complaint. While most studies on HHL pathogenesis have focused on inner hair cell (IHC) synaptopathy, we recently showed that transient auditory nerve (AN) demyelination also causes HHL in mice. To test the effect of myelinopathy on hearing in a clinically relevant model, we studied a mouse model of Charcot-Marie-Tooth type 1A (CMT1A), the most prevalent hereditary peripheral neuropathy in humans.

View Article and Find Full Text PDF

Hidden hearing loss (HHL), a recently described auditory neuropathy characterized by normal audiometric thresholds but reduced sound-evoked cochlear compound action potentials, has been proposed to contribute to hearing difficulty in noisy environments in people with normal hearing thresholds, a widespread complaint. While most studies on HHL pathogenesis have focused on inner hair cell (IHC) synaptopathy, we recently showed that transient auditory nerve (AN) demyelination also causes HHL in mice. To test the impact of myelinopathy on hearing in a clinically relevant model, we studied a mouse model of Charcot-Marie-Tooth type 1A (CMT1A), the most prevalent hereditary peripheral neuropathy in humans.

View Article and Find Full Text PDF

Brainstem olivocochlear neurons (OCNs) modulate the earliest stages of auditory processing through feedback projections to the cochlea and have been shown to influence hearing and protect the ear from sound-induced damage. Here, we used single-nucleus sequencing, anatomical reconstructions, and electrophysiology to characterize murine OCNs during postnatal development, in mature animals, and after sound exposure. We identified markers for known medial (MOC) and lateral (LOC) OCN subtypes, and show that they express distinct cohorts of physiologically relevant genes that change over development.

View Article and Find Full Text PDF