Publications by authors named "M T Tremaine"

Metabolic engineering strategies have been successfully implemented to improve the production of isobutanol, a next-generation biofuel, in . Here, we explore how two of these strategies, pathway re-localization and redox cofactor-balancing, affect the performance and physiology of isobutanol producing strains. We equipped yeast with isobutanol cassettes which had either a mitochondrial or cytosolic localized isobutanol pathway and used either a redox-imbalanced (NADPH-dependent) or redox-balanced (NADH-dependent) ketol-acid reductoisomerase enzyme.

View Article and Find Full Text PDF

Bottlenecks in the efficient conversion of xylose into cost-effective biofuels have limited the widespread use of plant lignocellulose as a renewable feedstock. The yeast Saccharomyces cerevisiae ferments glucose into ethanol with such high metabolic flux that it ferments high concentrations of glucose aerobically, a trait called the Crabtree/Warburg Effect. In contrast to glucose, most engineered S.

View Article and Find Full Text PDF

Currently, microbial conversion of lignocellulose-derived glucose and xylose to biofuels is hindered by the fact that most microbes (including Escherichia coli [E. coli], Saccharomyces cerevisiae, and Zymomonas mobilis) preferentially consume glucose first and consume xylose slowly after glucose is depleted in lignocellulosic hydrolysates. In this study, E.

View Article and Find Full Text PDF

Imidazolium ionic liquids (IILs) have a range of biotechnological applications, including as pretreatment solvents that extract cellulose from plant biomass for microbial fermentation into sustainable bioenergy. However, residual levels of IILs, such as 1-ethyl-3-methylimidazolium chloride ([CCim]Cl), are toxic to biofuel-producing microbes, including the yeast strains isolated from diverse ecological niches differ in genomic sequence and in phenotypes potentially beneficial for industrial applications, including tolerance to inhibitory compounds present in hydrolyzed plant feedstocks. We evaluated >100 genome-sequenced strains for tolerance to [CCim]Cl and identified one strain with exceptional tolerance.

View Article and Find Full Text PDF