Trypanosomatids are unicellular organisms that colonize a wide diversity of environments and hosts. For instance, Trypanosoma cruzi is a human pathogen responsible for Chagas diseases, while Leishmania tarentolae infects amphibians and became a biotechnological tool suitable for recombinant protein expression. T.
View Article and Find Full Text PDFThe ubiquitin-proteasome system is a post-translational regulatory pathway for controlling protein stability and activity that underlies many fundamental cellular processes, including cell cycle progression. Target proteins are tagged with ubiquitin molecules through the action of an enzymatic cascade composed of E1 ubiquitin activating enzymes, E2 ubiquitin conjugating enzymes, and E3 ubiquitin ligases. One of the E3 ligases known to be responsible for the ubiquitination of cell cycle regulators in eukaryotes is the SKP1-CUL1-F-box complex (SCFC).
View Article and Find Full Text PDFTrypanosoma cruzi, the etiologic agent of Chagas disease, is a protozoan parasite with a life cycle that alternates between replicative and non-replicative forms, but the components and mechanisms that regulate its cell cycle are poorly described. In higher eukaryotes, cyclins are proteins that activate cyclin-dependent kinases (CDKs), by associating with them along the different stages of the cell cycle. These cyclin-CDK complexes exert their role as major modulators of the cell cycle by phosphorylating specific substrates.
View Article and Find Full Text PDFThis work analyzes the effect of the alkaloid colchicine on the growth of Trypanosoma cruzi epimastigotes, using immunofluorescence microscopy and flow cytometry techniques. We found that colchicine reversibly inhibited cytokinesis but not synthesis or segregation of nuclear and kinetoplastid DNA, in a concentration-dependent manner. We showed that, once colchicine was removed from the growth medium, cytokinesis was restored but abnormal segregation of kinetoplasts and nuclei generated zoids and parasites with two nuclei and one kinetoplast, among other aberrant cells.
View Article and Find Full Text PDFRegulation of eukaryotic cell cycle progression requires sequential activation and inactivation of cyclin-dependent kinases (CDKs). Activation of the cyclin B-cdc2 kinase complex is a pivotal step in mitotic initiation and the tyrosine kinase Wee1 is a key regulator of cell cycle sequence during G2/M transition and inhibits mitotic entry by phosphorylating the inhibitory tyrosine 15 on the cdc2 M-phase-inducing kinase. Wee1 degradation is essential for the exit from the G2 phase.
View Article and Find Full Text PDF