Tin sulphide compounds (SnS, x = 1, 2) are potential anode materials for potassium-ion batteries (PIBs) due to their characteristic layered structure, high theoretical capacity, non-toxicity and low production cost. However, they suffer from significant volume changes resulting in poor performance of such anodes. In this work incorporation of SnS into the carbon structure was expected to overcome these disadvantages.
View Article and Find Full Text PDFElectrocatalytic water splitting for green hydrogen production necessitates effective electrocatalysts. Currently, commercial catalysts are primarily platinum-based. Therefore, finding catalysts with comparable catalytic activity but lower cost is essential.
View Article and Find Full Text PDFThe article delves into the synthesis and characterization of MoS-carbon-based materials, holding promise for applications in supercapacitors and ion batteries. The synthesis process entails the preparation of MoS and its carbon hybrids through exfoliation, hydrothermal treatment, and subsequent pyrolysis. Various analytical techniques were employed to comprehensively examine the structural, compositional, and morphological properties of the resulting materials.
View Article and Find Full Text PDFIn this study, we investigate the catalytic performance of molybdenum sulfide (MoS) modified with either nickel (Ni) or platinum (Pt) nanoparticles as catalysts for the hydrogen evolution reaction (HER). The MoS was prepared on the TiO nanotube substrates via a facile hydrothermal method, followed by the deposition by magnetron sputtering of Ni or Pt nanoparticles on the MoS surface. Structural and morphological characterization confirmed the successful incorporation of Ni or Pt nanoparticles onto the MoS support.
View Article and Find Full Text PDFIn this work, ZnInS layers were obtained on fluorine doped tin oxide (FTO) glass and TiO nanotubes (TiONT) using a hydrothermal process as photoanodes for photoelectrochemical (PEC) water splitting. Then, samples were annealed and the effect of the annealing temperature was investigated. Optimization of the deposition process and annealing of ZnInS layers made it possible to obtain an FTO-based material generating a photocurrent of 1.
View Article and Find Full Text PDF