Publications by authors named "M T Siles Cordero"

In this issue of Cell Reports, Ma et al. identify causative regulatory links between self-organization in surface-attached bacterial colonies and the rate of horizontal gene transfers (conjugations) and subsequent selection of the newly arising population of recipient bacteria (transconjugants).

View Article and Find Full Text PDF

The role of the inflammasomes in aging and progeroid syndromes remain understudied. Recently, MCC950, a NLRP3 inhibitor, was used in Zmpste24 mice to ameliorate the phenotypes. However, the safety of MCC950 was questioned due to liver toxicity observed in humans.

View Article and Find Full Text PDF

The properties of an active fluid, for example, a bacterial bath or a collection of microtubules and molecular motors, can be accessed through the dynamics of passive particle probes. Here, in the perspective of analyzing experimental situations of confinement in droplets, we consider the kinematics of a negatively buoyant probe particle in an active fluid, both confined within a spherical domain. The active bath generates a fluctuating flow that pushes the particle with a velocity that is modeled as a colored stochastic noise, characterized by two parameters, the intensity and memory time of the active flow.

View Article and Find Full Text PDF

Can topography be used to control bacteria accumulation? We address this question in the model system of smooth-swimming and run-and-tumble Escherichia coli swimming near a sinusoidal surface, and show that the accumulation of bacteria is determined by the characteristic curvature of the surface. For low curvatures, cells swim along the surface due to steric alignment and are ejected from the surface when they reach the peak of the sinusoid. Increasing curvature enhances this effect and reduces the density of bacteria in the curved surface.

View Article and Find Full Text PDF

Background: Senescence is a cellular aging-related process triggered by different stresses and characterized by the secretion of various inflammatory factors referred to as senescence-associated secretory phenotype (SASP), some of which are produced by the NLRP3 inflammasome. Here, we present evidence that the NLRP1 inflammasome is a DNA damage sensor and a key mediator of senescence.

Methods: Senescence was induced in fibroblasts in vitro and in mice.

View Article and Find Full Text PDF