Translational research on the Cre/loxP recombination system focuses on enhancing its specificity by modifying Cre/DNA interactions. Despite extensive efforts, the exact mechanisms governing Cre discrimination between substrates remains elusive. Cre recognizes 13 bp inverted repeats, initiating recombination in the 8 bp spacer region.
View Article and Find Full Text PDFTumor cells subvert immune surveillance or lytic stress by harnessing inhibitory signals. Hence, bispecific antibodies have been developed to direct CTLs to the tumor site and foster immune-dependent cytotoxicity. Although applied with success, T cell-based immunotherapies are not universally effective partially because of the expression of pro-survival factors by tumor cells protecting them from apoptosis.
View Article and Find Full Text PDFThe WNT signaling pathway is a central regulator of bone development and regeneration. Functional alterations of WNT ligands and inhibitors are associated with a variety of bone diseases that affect bone fragility and result in a high medical and socioeconomic burden. Hence, this cellular pathway has emerged as a novel target for bone-protective therapies, e.
View Article and Find Full Text PDFThe potential of designing irreversible alkyne-based inhibitors of cysteine cathepsins by isoelectronic replacement in reversibly acting potent peptide nitriles was explored. The synthesis of the dipeptide alkynes was developed with special emphasis on stereochemically homogeneous products obtained in the Gilbert-Seyferth homologation for C≡C bond formation. Twenty-three dipeptide alkynes and 12 analogous nitriles were synthesized and investigated for their inhibition of cathepsins B, L, S, and K.
View Article and Find Full Text PDF