Publications by authors named "M T Passoni"

Background: One in four patients with moderate to severe traumatic brain injury (TBI) also has other body district injuries (OBD). The impact of OBD on mortality and disability is debated. This study compared outcomes of TBI patients with polytrauma (p-TBI) versus isolated TBI (alone-TBI) and identified outcome determinants, focusing on survival time and prognosis.

View Article and Find Full Text PDF

Several phthalates, mainly used as plasticizers, are known for their adverse effects on the male genital system. Previously, we demonstrated that an environmentally relevant mixture of six antiandrogenic phthalates (PMix), derived from a biomonitoring study in pregnant Brazilian women, was able to disrupt the reproductive development in male rats. Experimental groups (control, 0.

View Article and Find Full Text PDF

In this paper, we present a bolt preload monitoring system, including the system architecture and algorithms. We show how Finite Element Method (FEM) simulations aided the design and how we processed signals to achieve experimental validation. The preload is measured using a Piezoelectric Micromachined Ultrasonic Transducer (PMUT) in pulse-echo mode, by detecting the Change in Time-of-Flight (CTOF) of the acoustic wave generated by the PMUT, between no-load and load conditions.

View Article and Find Full Text PDF

Broadband low-resolution near-infrared spectrographs in a compact form are crucial for ground- and space-based astronomy and other fields of sensing. Astronomical spectroscopy poses stringent requirements including high efficiency, broad band operation (> 300 nm), and in some cases, polarization insensitivity. We present and compare experimental results from the design, fabrication, and characterization of broadband (1200 - 1650 nm) arrayed waveguide grating (AWG) spectrographs built using the two most promising low-loss platforms - SiN (rectangular waveguides) and doped-SiO (square waveguides).

View Article and Find Full Text PDF

Double-layer targets (DLTs), made of a low-density foam on top of a solid substrate, can efficiently convert the energy of a high-intensity laser to provide sources of photons and protons. We investigate a 30-fs pulse with a peak intensity of I∼8.7×10^{20}W/cm^{2} and a peak power of ∼120 TW interacting with a DLT using three-dimensional (3D) particle-in-cell simulations.

View Article and Find Full Text PDF