Publications by authors named "M T Martinez Miravete"

Modified urinary fluid shear stress (FSS) induced by variations of urinary fluid flow and composition is observed in early phases of most kidney diseases. Recently, we reported that renal tubular FSS promotes endothelial cell activation and subsequent adhesion of human monocytes, thereby suggesting that changes in urinary FSS can induce the development of inflammation (Miravète M, Klein J, Besse-Patin A, Gonzalez J, Pecher C, Bascands JL, Mercier-Bonin M, Schanstra JP, Buffin-Meyer B, BBRC 407: 813-817, 2011). Here, we evaluated the influence of tubular FSS on monocytes as they play an important role in the progression of inflammation in nephropathies.

View Article and Find Full Text PDF

Modified urinary fluid shear stress (FSS) induced by variations of urinary fluid flow and composition is observed in early phases of most kidney diseases. In this study, we hypothesized that changes in urinary FSS represent a tubular aggression that contributes to the development of inflammation, a key event in progression of nephropathies. Human renal tubular cells (HK-2) were exposed to FSS for 30 min at 0.

View Article and Find Full Text PDF

The incidence of chronic kidney disease leading to end-stage renal disease has significantly increased and may reach epidemic proportions over the next decade. Regardless of the initial insult, the progression of most forms of renal disease results in tubulo-interstitial fibrosis. This has been closely correlated to the future appearance of renal failure and has therefore been associated with poor long-term prognosis.

View Article and Find Full Text PDF

Ureteropelvic junction (UPJ) obstruction is the most frequently observed cause of obstructive nephropathy in children. Neonatal and foetal animal models have been developed that mimic closely what is observed in human disease. The purpose of this review is to discuss how obstructive nephropathy alters kidney histology and function and describe the molecular mechanisms involved in the progression of the lesions, including inflammation, proliferation/apoptosis, renin-angiotensin system activation and fibrosis, based on both human and animal data.

View Article and Find Full Text PDF

We examined the capacity of delayed inhibition of plasminogen activator inhibitor-1 (PAI-1) to reduce tubulointerstitial fibrosis induced by unilateral ureteral obstruction (UUO) in mice. Small peptides mimicking parts of urokinase (uPA) and tissular plasminogen activator (tPA) and serving as decoy molecules for PAI-1 were administered daily during the late stages (3 to 8 days) of UUO. Treatment with PAI-1 decoys reduced interstitial deposition of fibronectin, collagen III and collagen IV without changes in macrophage and myofibroblast infiltration.

View Article and Find Full Text PDF