Weekly urinalysis was conducted for 12 weeks on a group of 21 long-term catheter users with confirmed catheter encrustation and urinary tract colonization with urease-positive bacteria, in order to explore the cause of considerable variation in the severity of encrustation between sufferers. The rapidity of catheter blockage correlated significantly with the pH above which crystals precipitated from urine (the nucleation pH) but not the pH of the voided urine itself. Linear regression showed the nucleation pH to be significantly predicted by a combination of urinary calcium and magnesium concentrations, with calcium being the more influential variable.
View Article and Find Full Text PDFObjectives: To characterize the variability in the times catheters take to block with encrustation in patients who have Proteus in their urinary flora, and to identify factors responsible for modulating the rate of catheter encrustation and blockage.
Patients And Methods: Twenty patients were followed prospectively for > or = 12 weeks, with a bacteriological analysis on weekly urine samples. The pH of the voided urine samples and the pH at which crystals formed in them (the nucleation pH) were determined.
Eur J Clin Microbiol Infect Dis
September 2005
The factors controlling the rate at which crystalline bacterial biofilms develop on indwelling bladder catheters are poorly understood. It is known that normally the pH of voided urine (pHv) is lower than the pH at which calcium and magnesium phosphates come out of urine solution (pHn). In patients who develop infections with urease producing bacteria, however, the pHv rises above the pHn and precipitation of the phosphates occurs in the urine and the biofilm.
View Article and Find Full Text PDFMethicillin-resistant Staphylococcus aureus (MRSA) and MSSA strains were treated with: (a) grapefruit oil (GFO) components, isolated by chromatography and characterised by NMR and mass spectroscopy; (b) antimicrobial agents, or (c) a combination of both to evaluate (MIC determination) intrinsic antibacterial activity and to determine whether GFO components could modulate bacterial sensitivity to the anti-bacterial agents. Preliminary data suggested that the grapefruit component 4-[[(E)-5-(3,3-dimethyl-2-oxiranyl)-3-methyl-2-pentenyl]oxy]-7H-furo[3,2-g]chromen-7-one (2) enhances the susceptibility of test MRSA strains to agents, e.g.
View Article and Find Full Text PDF