Background: Clinical and/or laboratory signs of systemic inflammation occur frequently in patients undergoing long-term haemodialysis. It is likely, therefore, that a compensatory release of endogenous anti-inflammatory molecules occurs to limit host reactions. The aim of the present research was to determine if the potent anti-inflammatory peptide alpha-melanocyte-stimulating hormone (alpha-MSH), a pro-opiomelanocortin derivative, is increased in plasma of haemodialysis patients.
View Article and Find Full Text PDFUntil recently, inflammation was believed to arise from events taking place exclusively in the periphery. However, it is now clear that central neurogenic influences can either enhance or modulate peripheral inflammation. Therefore, it should be possible to improve treatment of inflammation by use of antiinflammatory agents that reduce peripheral host responses and inhibit proinflammatory signals in the central nervous system (CNS).
View Article and Find Full Text PDFThe hypothesis that macrophages contain an autocrine circuit based on melanocortin [ACTH and alpha-melanocyte-stimulating hormone (alpha-MSH)] peptides has major implications for neuroimmunomodulation research and inflammation therapy. To test this hypothesis, cells of the THP-1 human monocyte/macrophage line were stimulated with lipopolysaccharide (LPS) in the presence and absence of alpha-MSH. The inflammatory cytokine tumor necrosis factor (TNF)-alpha was inhibited in relation to alpha-MSH concentration.
View Article and Find Full Text PDFThe neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) reduces fever and acute inflammation in the skin when administered centrally. The aim of the present research was to determine whether central alpha-MSH can also reduce signs of systemic inflammation in mice with endotoxemia. Increases in serum tumor necrosis factor-alpha and nitric oxide, induced by intraperitoneal administration of endotoxin, were modulated by central injection of a small concentration of alpha-MSH.
View Article and Find Full Text PDFCiliary neurotrophic factor (CNTF) inhibits the production of tumor necrosis factor (TNF) in lipopolysaccharide (LPS)-treated mice and protects against LPS lethality when coadministered with its soluble receptor (sCNTFR alpha). Both of these activities are abolished in adrenalectomized (ADX) mice. LPS-induced pulmonary polymorphonuclear neutrophil (PMN) infiltration and nitric oxide (NO) production were also inhibited by CNTF + sCNTFR alpha but not by CNTF alone.
View Article and Find Full Text PDF