Motivation: We are witnessing an enormous growth in the amount of molecular profiling (-omics) data. The integration of multi-omics data is challenging. Moreover, human multi-omics data may be privacy-sensitive and can be misused to de-anonymize and (re-)identify individuals.
View Article and Find Full Text PDFSummary: Extensive human health data from cohort studies, national registries, and biobanks can reveal lifecourse risk factors impacting health. Combining these sources offers increased statistical power, rare outcome detection, replication of findings, and extended study periods. Traditionally, this required data transfer to a central location or separate partner analyses with pooled summary statistics, posing ethical, legal, and time constraints.
View Article and Find Full Text PDFThe Solve-RD project brings together clinicians, scientists, and patient representatives from 51 institutes spanning 15 countries to collaborate on genetically diagnosing ("solving") rare diseases (RDs). The project aims to significantly increase the diagnostic success rate by co-analyzing data from thousands of RD cases, including phenotypes, pedigrees, exome/genome sequencing, and multiomics data. Here we report on the data infrastructure devised and created to support this co-analysis.
View Article and Find Full Text PDFStud Health Technol Inform
August 2024
Assessing the pathogenicity of genetic variants is a critical aspect of genomic medicine and precision healthcare. Over the last decades, the identification of genetic variants and their characterization has become simpler (advent of high-throughput sequencing technologies, analysis, and visualization support tools, etc.).
View Article and Find Full Text PDF