Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. The IPF-conditioned matrix (IPF-CM) system enables the study of matrix-fibroblast interplay. While effective at slowing fibrosis, nintedanib has limitations and the mechanism is not fully elucidated.
View Article and Find Full Text PDFBackground And Aims: Idiopathic pulmonary fibrosis (IPF) is a common and severe form of pulmonary fibrosis. Nintedanib, a triple angiokinase inhibitor, is approved for treating IPF. Galectin 3 (Gal-3) activates a variety of profibrotic processes.
View Article and Find Full Text PDFOral nintedanib is marketed for the treatment of idiopathic pulmonary fibrosis (IPF), Systemic Sclerosis-Associated Interstitial Lung Disease and Chronic Fibrosing Interstitial Lung Diseases with a Progressive Phenotype. While effective at slowing fibrosis progression, as an oral medicine nintedanib has limitations. To reduce side effects and maximize efficacy, nintedanib was reformulated as a solution for nebulization and inhaled administration.
View Article and Find Full Text PDFOral nintedanib is marketed for the treatment of idiopathic pulmonary fibrosis (IPF). While effective slowing fibrosis progression, as an oral medicine nintedanib is limited. To reduce side effects and maximize efficacy, nintedanib was reformulated as a solution for nebulization and inhaled administration.
View Article and Find Full Text PDFPurpose: Inhaled delivery of pirfenidone to the lungs of patients with idiopathic pulmonary fibrosis holds promise to eliminate oral-observed side effects while enhancing efficacy. This study aimed to comprehensively describe the pulmonary pharmacokinetics of inhaled aerosol pirfenidone in healthy adult sheep.
Methods: Pirfenidone concentrations were evaluated in plasma, lung-derived lymph and epithelial lining fluid (ELF) with data subjected to non-compartmental pharmacokinetic analysis.