Semiconducting ternary nitrides are a promising class of materials that have received increasing attention in recent years, but often show high free electron concentrations due to the low defect formation energies of nitrogen vacancies and substitutional oxygen, leading to degenerate n-type doping. To achieve non-degenerate behavior, we now investigate a family of amorphous calcium-zinc nitride (Ca-Zn-N) thin films. By adjusting the metal cation ratios, we demonstrate band gap tunability between 1.
View Article and Find Full Text PDFAttenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) is a powerful method for probing interfacial chemical processes. However, SEIRAS-active nanostructured metallic thin films for the in situ analysis of electrochemical phenomena are often unstable under biased aqueous conditions. In this work, we present a surface-enhancing structure based on etched black Si internal reflection elements with Au-coatings for in situ electrochemical ATR-SEIRAS.
View Article and Find Full Text PDFRev Sci Instrum
August 2023
The necessity of increased sample throughput has led to increased usage of robotic systems and automation of sample preparation processes. Many devices, especially for dip coating applications, are mechanically simple but, nevertheless, require large financial investments. Here, a low-cost alternative to commercial dip coaters based on a readily available 3D printer is presented and resulting films are compared to those obtained from an exemplary commercial device.
View Article and Find Full Text PDFThe combination of molecular catalysts and semiconductor substrates in hybrid heterogeneous photo- or electrocatalytic devices could yield synergistic effects that result in enhanced activity and long-term stability. The extent of synergy strongly depends on the electronic interactions and energy level alignment between the molecular states and the valence and conduction band of the substrate. These properties of hybrid interfaces are investigated for a model system composed of protoporphyrin IX (PPIX) as a stand-in for molecular catalysts and a variety of semiconductor substrates.
View Article and Find Full Text PDF