Publications by authors named "M Stryjczyk"

Atomic nuclei serve as prime laboratories for investigations of complex quantum phenomena, where minor nucleon rearrangements cause significant structural changes. Pb is the heaviest known neutron-deficient Pb isotope that can exhibit three distinct shapes: prolate, oblate, and spherical, with nearly degenerate excitation energies. Here we report on the combined results from three state-of-the-art measurements to directly observe these deformations in Pb.

View Article and Find Full Text PDF
Article Synopsis
  • * The new mass data, with a precision around 1 keV/c², supports the robustness of the N=50 neutron shell closure and enables comparisons with advanced theoretical models for understanding nuclear properties.
  • * The study also highlights the challenges faced by theoretical approaches, like ab initio calculations and density functional theory, in accurately predicting ground-state properties in the silver isotopic chain near the proton dripline.
View Article and Find Full Text PDF

The presented paper discusses the production of radioactive ion beams of francium, radium, and actinium from thick uranium carbide (UC ) targets at ISOLDE, CERN. This study focuses on the release curves and extractable yields of francium, radium and actinium isotopes. The ion source temperature was varied in order to study the relative contributions of surface and laser ionization to the production of the actinium ion beams.

View Article and Find Full Text PDF

At CERN-ISOLDE, high-purity radioactive ion beams of Fr and RaF were investigated with α-decay spectroscopy at the CRIS and ASET experiments in the course of three different experimental campaigns. The half-life of At, α-decay daughter of Fr, is measured to be 36.3(3)[9]μs, and that of Ra was determined to be 26.

View Article and Find Full Text PDF

Isomers close to doubly magic _{28}^{78}Ni_{50} provide essential information on the shell evolution and shape coexistence near the Z=28 and N=50 double shell closure. We report the excitation energy measurement of the 1/2^{+} isomer in _{30}^{79}Zn_{49} through independent high-precision mass measurements with the JYFLTRAP double Penning trap and with the ISOLTRAP multi-reflection time-of-flight mass spectrometer. We unambiguously place the 1/2^{+} isomer at 942(10) keV, slightly below the 5/2^{+} state at 983(3) keV.

View Article and Find Full Text PDF