Publications by authors named "M Strassburg"

Besides high-power light-emitting diodes (LEDs) with dimensions in the range of mm, micro-LEDs (μLEDs) are increasingly gaining interest today, motivated by the future applications of μLEDs in augmented reality displays or for nanometrology and sensor technology. A key aspect of this miniaturization is the influence of the structure size on the electrical and optical properties of μLEDs. Thus, in this article, investigations of the size dependence of the electro-optical properties of μLEDs, with diameters in the range of 20 to 0.

View Article and Find Full Text PDF
Article Synopsis
  • Mixing special materials called inorganic semiconductors with organic films can create new, cool electronic devices.
  • A method called oxidative chemical vapor deposition (oCVD) helps make high-quality, flexible structures using a polymer called PEDOT for advanced LEDs that look different from regular ones.
  • Tests show that these new hybrid devices work really well, with great light and heat performance, making them better than just using inorganic materials alone.
View Article and Find Full Text PDF

In this paper, a superior-quality InN/p-GaN interface grown using pulsed metalorganic vapor-phase epitaxy (MOVPE) is demonstrated. The InN/p-GaN heterojunction interface based on high-quality InN (electron concentration 5.19 × 10 cm and mobility 980 cm²/(V s)) showed good rectifying behavior.

View Article and Find Full Text PDF

We study the photoluminescence emission from planar and 3D InGaN/GaN LED structures, excited using a femtosecond laser with fluences close to sample's damage threshold. For a typical laser system consisting of a titanium-sapphire regenerative amplifier, which is pumping an optical parametric amplifier delivering output pulses of a few tens of MW pulse power with ∼100 fs pulse duration, 1 kHz repetition rate and a wavelength of 325 nm, we determine the damage threshold of the InGaN/GaN LEDs to be about 0.05 J/cm.

View Article and Find Full Text PDF

Vertically aligned gallium nitride (GaN) nanowire (NW) arrays have attracted a lot of attention because of their potential for novel devices in the fields of optoelectronics and nanoelectronics. In this work, GaN NW arrays have been designed and fabricated by combining suitable nanomachining processes including dry and wet etching. After inductively coupled plasma dry reactive ion etching, the GaN NWs are subsequently treated in wet chemical etching using AZ400K developer (i.

View Article and Find Full Text PDF