Publications by authors named "M Stobart"

Phenotypic susceptibility testing of the complex (MTBC) isolate requires culture growth, which can delay rapid detection of resistant cases. Whole genome sequencing (WGS) and data analysis pipelines can assist in predicting resistance to antimicrobials used in the treatment of tuberculosis (TB). This study compared phenotypic susceptibility testing results and WGS-based predictions of antimicrobial resistance (AMR) to four first-line antimicrobials-isoniazid, rifampin, ethambutol, and pyrazinamide-for MTBC isolates tested between the years 2018-2022.

View Article and Find Full Text PDF

When using amikacin to treat complex pulmonary disease (MAC-PD), a minimum inhibitory concentration resistance breakpoint of ≥64 mcg/mL is recommended. We explored whether amikacin resistance characterized by phenotypic drug susceptibility testing was associated with clinical outcomes or mutational resistance in a retrospective cohort of patients with MAC-PD. Despite little aminoglycoside exposure, amikacin resistance was common in our MAC-PD patients but was not associated with worse outcomes or gene mutations.

View Article and Find Full Text PDF

Epidemiologic research on zoonotic tuberculosis historically used Mycobacterium bovis as a surrogate measure; however, increased reports of human tuberculosis caused by other animal-associated Mycobacterium tuberculosis complex members like Mycobacterium orygis necessitates their inclusion. We performed a retrospective cohort study including persons infected with any animal-lineage M tuberculosis complex species in Alberta, Canada, from January 1995 to July 2021, identifying 42 patients (20 M bovis, 21 M orygis, 1 M caprae). Demographic, epidemiologic, and clinical characteristics were compared against persons with culture-confirmed M tuberculosis infection.

View Article and Find Full Text PDF

Astrocytes express ionotropic receptors, including N-methyl-D-aspartate receptors (NMDARs). However, the contribution of NMDARs to astrocyte-neuron interactions, particularly in vivo, has not been elucidated. Here we show that a knockdown approach to selectively reduce NMDARs in mouse cortical astrocytes decreases astrocyte Ca transients evoked by sensory stimulation.

View Article and Find Full Text PDF

Recent advances in protein biology and mouse genetics have made it possible to measure intracellular calcium fluctuations of brain cells in vivo and to correlate this with local hemodynamics. This protocol uses transgenic mice that have been prepared with a chronic cranial window and express the genetically encoded calcium indicator, RCaMP1.07, under the α-smooth muscle actin promoter to specifically label mural cells, such as vascular smooth muscle cells and ensheathing pericytes.

View Article and Find Full Text PDF