Field experiments were devised to mimic the entrapment conditions under the rubble of collapsed buildings aiming to investigate the evolution of volatile organic compounds (VOCs) during the early dead body decomposition stage. Three pig carcasses were placed inside concrete tunnels of a search and rescue (SAR) operational field terrain for simulating the entrapment environment after a building collapse. The experimental campaign employed both laboratory and on-site analytical methods running in parallel.
View Article and Find Full Text PDFThe design, development, and validation of a dynamic vapor generator are presented. The generator simulates human scent (odor) emissions from trapped victims in the voids of collapsed buildings. The validation of the device was carried out using a reference detector: a quadrupole mass spectrometer equipped with a pulsed sampling (PS-MS) system.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2014
Fires are becoming more violent and frequent resulting in major economic losses and long-lasting effects on communities and ecosystems; thus, efficient fire monitoring is becoming a necessity. A novel triple multi-sensor approach was developed for monitoring and studying the burning of dry forest fuel in an open field scheduled experiment; chemical, optical, and acoustical sensors were combined to record the fire spread. The results of this integrated field campaign for real-time monitoring of the fire event are presented and discussed.
View Article and Find Full Text PDFThe ChemPro 100i chemical detector (aspiration-type ion mobility spectrometer) was used for the detection of selected volatile organic compounds known to be potential indicators of human presence. The targeted group of compounds mainly comprised ketones (acetone, 2-butanone, 2-pentanone, 3-methyl-2-butanone, 4-heptanone), aldehydes (propanal, pentanal, hexanal, octanal), dimethyl disulfide (DMDS), isoprene and ethanol. Gaseous standards of these compounds were produced from pure substances and analysed using the aspiration ion mobility spectrometry (AIMS) chemical detector.
View Article and Find Full Text PDFA classification of various categories of entrapped people under the ruins of collapsed buildings after earthquakes, technical failures or explosions is proposed. Type and degree of injury at the moment of building collapse and duration of entrapment are the two basic parameters in this classification. The aim is to provide sources and types of volatile organic compounds (VOCs) that can be used for establishing a new method for locating entrapped victims based on human chemical signatures.
View Article and Find Full Text PDF