Purpose: The specific aims of this paper are to (1) develop and operationalize an electronic health record (EHR) data quality framework, (2) apply the dimensions of the framework to the phenotype and treatment pathways of ductal carcinoma in situ (DCIS) using Research Program data, and (3) propose and apply a checklist to evaluate the application of the framework.
Methods: We developed a framework of five data quality dimensions (DQD; completeness, concordance, conformance, plausibility, and temporality). Participants signed a consent and Health Insurance Portability and Accountability Act authorization to share EHR data and responded to demographic questions in the Basics questionnaire.
Introduction: Electronic Health Records (EHR) are a useful data source for research, but their usability is hindered by measurement errors. This study investigated an automatic error detection algorithm for adult height and weight measurements in EHR for the All of Us Research Program (All of Us).
Methods: We developed reference charts for adult heights and weights that were stratified on participant sex.