In physiological conditions, red blood cells (RBCs) demonstrate remarkable deformability, allowing them to undergo considerable deformation when passing through the microcirculation. However, this deformability is compromised in Type 1 diabetes mellitus (T1DM) and related pathological conditions. This study aims to investigate the biomechanical properties of RBCs in T1DM patients, focusing on identifying significant mechanical alterations associated with microvascular complications (MCs).
View Article and Find Full Text PDFThe convergence of nanotechnology and tissue engineering has paved the way for innovative cancer treatments that leverage the unique light absorption properties of nanomaterials. Indeed, photothermal therapy (PTT) and photodynamic therapy (PDT) utilize nanomaterials to convert near-infrared light into therapeutic energy for cancer treatment. This study focuses on the application of poly(lactic--glycolic acid) (PLGA) scaffolds, enhanced by graphene oxide, TiCT MXene, and TiS transition metal dichalcogenides for PDT and PTT treatments evaluated within 3D-bioprinted breast cancers.
View Article and Find Full Text PDFBackground: Novel circulating markers for the non-invasive staging of chronic liver disease (CLD) are in high demand. Although underutilized, extracellular matrix (ECM) components offer significant diagnostic potential. This study evaluates ECM-related markers in hepatitis C virus (HCV)-positive patients across varying fibrosis stages.
View Article and Find Full Text PDFHistorically, several classification systems have been used for brachytherapy, and they were based on the type of clinical purpose, type of implant and timing of the implant, dose-rate, and type of loading for treatment delivery. However, over the last decades, there have been some major technological advancements, including the introduction of image-guidance and possibility to modulate the dose delivered, which have led several authors (in order to highlight the differences between old technique and new approach) to label it in a different way by replacing "brachytherapy" with "interventional radiotherapy". Modern interventional procedures involve several key aspects, which contribute to the complexity of implant phase, such as implant type, imaging used during the procedure, and role of multi-disciplinary team in operating room.
View Article and Find Full Text PDFAims: This review evaluates the mechanisms underlying red blood cell (RBC) membrane fluidity changes in diabetes mellitus (DM) and explores strategies to assess and address these alterations. Emphasis is placed on developing a comprehensive index for membrane fluidity to improve monitoring and management in diabetic patients.
Materials And Methods: We reviewed current literature on RBC membrane fluidity, focussing on lipid composition, glycation, oxidative stress, and lipid transport alterations in diabetic patients.