Publications by authors named "M Spero"

Infection is among the most common factors that impede wound healing, yet standard treatments routinely fail to resolve chronic wound infections. The chronic wound environment is largely hypoxic/anoxic, and wounds are predominantly colonised by facultative and obligate anaerobic bacteria. Oxygen (O) limitation is an underappreciated driver of microbiota composition and behaviour in chronic wounds.

View Article and Find Full Text PDF

Background: The locking plate is a common device to treat distal femur fractures. Healing is affected by construct stiffness, thus many surgeon-controlled variables such as working length have been examined for their effects on strain at the fracture. No convenient analytical model which aids surgeons in determining working length has yet been described.

View Article and Find Full Text PDF

is an opportunistic pathogen that can establish chronic infections and form biofilm in wounds. Because the wound environment is largely devoid of oxygen, may rely on anaerobic metabolism, such as nitrate respiration, to survive in wounds. While nitrate reductase (Nar) typically reduces nitrate to nitrite, it can also reduce chlorate to chlorite, which is a toxic oxidizing agent.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an opportunistic bacterial pathogen that often encounters hypoxic/anoxic environments within the host, which increases its tolerance to many conventional antibiotics. Toward identifying novel treatments, we explored the therapeutic potential of chlorate, a pro-drug that kills hypoxic/anoxic, antibiotic-tolerant P. aeruginosa populations.

View Article and Find Full Text PDF

Gaining insight into the behavior of bacteria at the single-cell level is important given that heterogeneous microenvironments strongly influence microbial physiology. The hybridization chain reaction (HCR) is a technique that provides molecular signal amplification, enabling simultaneous mapping of multiple target RNAs at small spatial scales. To refine this method for biofilm applications, we designed and validated new probes to visualize the expression of key catabolic genes in Pseudomonas aeruginosa aggregates.

View Article and Find Full Text PDF