Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder characterized neuropathologically by TDP-43 proteinopathy with loss of TDP-43 nuclear splicing activity and formation of cytoplasmic TDP-43 aggregates. The lack of suitable experimental models of TDP-43 proteinopathy has hampered the discovery of effective therapies. We already showed that chronic and mild oxidative insult by sodium arsenite (ARS) triggered TDP-43 cytoplasmic aggregation and stress granules (SGs) formation in ALS patient-derived fibroblasts and motor neurons differentiated from induced pluripotent stem cells (iPSC-MNs).
View Article and Find Full Text PDFThe hexanucleotide G4C2 repeat expansion (HRE) in C9ORF72 gene is the major cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leading to both loss- and gain-of-function pathomechanisms. The wide clinical heterogeneity among C9ORF72 patients suggests potential modifying genetic and epigenetic factors. Notably, C9ORF72 HRE often co-occurs with other rare variants in ALS/FTD-associated genes, such as NEK1, which encodes for a kinase involved in multiple cell pathways, including DNA damage response and ciliogenesis.
View Article and Find Full Text PDFAmyotroph Lateral Scler Frontotemporal Degener
February 2024
The hexanucleotide repeat (HR) expansion is the main genetic cause of amyotrophic lateral sclerosis (ALS), with expansion size from 30 to >4000 units. Normal HR length is polymorphic (2-23 repeats) with alleles >8 units showing a low frequency in the general population. This study aimed to investigate if the normal HR length influences gene expression and acts as disease modifier in ALS patients negative for mutation (ALS-C9Neg).
View Article and Find Full Text PDFDuring the last decades, our knowledge about the genetic architecture of sporadic amyotrophic lateral sclerosis (sALS) has significantly increased. However, besides the recognized genetic risk factors, also the environment is supposed to have a role in disease pathogenesis. Epigenetic modifications reflect the results of the interaction between environmental factors and genes and may play a role in the development and progression of ALS.
View Article and Find Full Text PDF