Publications by authors named "M Soldera"

Direct Laser Interference Patterning (DLIP) stands out as a versatile and cost-effective method for functionalizing material surfaces at high throughputs. Monitoring the dynamics of the structure formation can lead to a deeper understanding of the interplay between the main factors governing the process and ultimately to optimize the final texture. Here, the formation of gratings on stainless steel by DLIP with ns-pulses is studied using a diffraction-based approach, which measures the time-resolved reflectivity (TRR) of the sample.

View Article and Find Full Text PDF

A route to increase the efficiency of thin film solar cells is improving the light-trapping capacity by texturing the top Transparent Conductive Oxide (TCO) so that the sunlight reaching the solar absorber scatters into multiple directions. In this study, Indium Tin Oxide (ITO) thin films are treated by infrared sub-picosecond Direct Laser Interference Patterning (DLIP) to modify the surface topography. Surface analysis by scanning electron microscopy and confocal microscopy reveals the presence of periodic microchannels with a spatial period of 5 µm and an average height between 15 and 450 nm decorated with Laser-Induced Periodic Surface Structures (LIPSS) in the direction parallel to the microchannels.

View Article and Find Full Text PDF

Direct laser interference patterning (DLIP) is a laser-based surface structuring method that stands out for its high throughput, flexibility and resolution for laboratory and industrial manufacturing. This top-down technique relies on the formation of an interference pattern by overlapping multiple laser beams onto the sample surface and thus producing a periodic texture by melting and/or ablating the material. Driven by the large industrial sectors, DLIP has been extensively used in the last decades to functionalize metallic surfaces, such as steel, aluminium, copper or nickel.

View Article and Find Full Text PDF

Hierarchical textures (combining 2D periodic large and small micro textures) as an external outcoupling solution for OLEDs have been researched, both experimentally and by optical simulations. For the case of a red bottom emitting OLED, different hierarchical textures were fabricated using laser-based methods and a replication step and applied to the OLED substrate, resulting in an increased light outcoupling. Laboratory-size OLED devices with applied textured foils show a smaller increase in efficiency compared to the final large area devices.

View Article and Find Full Text PDF

Surface functionalization of polymers aims to introduce novel properties that favor bioactive responses. We have investigated the possibility of surface functionalization of polyethylene terephthalate (PET) sheets by the combination of laser ablation with hot embossing and the application of such techniques in the field of stem cell research. We investigated the response of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to topography in the low micrometer range.

View Article and Find Full Text PDF