This paper discusses the foundation of security theory for the Quantum stream cipher based on the Holevo-Yuen theory, which allows the use of "optical amplifiers". This type of cipher is a technology that provides information-theoretic security (ITS) to optical data transmission by randomizing ultrafast optical communication signals with quantum noise. In general, the quantitative security of ITS is evaluated in terms of the unicity distance in Shannon theory.
View Article and Find Full Text PDFIn this review paper, we first introduce the basic concept of quantum computer-resistant cryptography, which is the cornerstone of security technology for the network of a new era. Then, we will describe the positioning of mathematical cryptography and quantum cryptography, that are currently being researched and developed. Quantum cryptography includes QKD and quantum stream cipher, but we point out that the latter is expected as the core technology of next-generation communication systems.
View Article and Find Full Text PDFThe low thermoplasticities of polysaccharide esters make them unsuitable for melt spinning. In this study, we aimed to overcome this problem by mixed esterification of paramylon, a euglenoid β-1,3-glucan with short- and medium-chain acyl groups, as melt-spinnable materials. Thermal analyses revealed that all the synthesized paramylon mixed esters exhibited glass transition temperatures greater than 100 °C; some of them showed large differences between the melting and 5%-weight-loss temperatures (5s) and are extrudable through a spinneret at a temperature ~100 °C below 5, rendering them potential candidates for the production of melt-spun filaments.
View Article and Find Full Text PDFThe thermal, crystalline, and pressure-sensitive adhesive properties of thermoplastic monoesters made from paramylon, a storage polysaccharide of Euglena gracilis, and a long-chain acyl chloride, were examined. Differential scanning calorimetry revealed that the thermal properties of these paramylon monoesters were dependent on the chain length and the average degree of substitution of the long-chain acyl group (av. DS).
View Article and Find Full Text PDFBackground: The purpose of this study was to evaluate the impact of markerless on-board kilovoltage (kV) cone-beam computed tomography (CBCT)-based positioning uncertainty on determination of the planning target volume (PTV) margin by comparison with kV on-board imaging (OBI) with gold fiducial markers (FMs), and to validate a methodology for the evaluation of PTV margins for markerless kV-CBCT in prostate image-guided radiotherapy (IGRT).
Methods: A total of 1177 pre- and 1177 post-treatment kV-OBI and 1177 pre- and 206 post-treatment kV-CBCT images were analyzed in 25 patients who received prostate IGRT with daily localization by implanted FMs. Intrafractional motion of the prostate was evaluated between each pre- and post-treatment image with these two different techniques.