Publications by authors named "M Slouf"

The development of stimuli-responsive drug delivery systems enables targeted delivery and environment-controlled drug release, thereby minimizing off-target effects and systemic toxicity. We prepared and studied tailor-made dual-responsive systems (thermo- and pH-) based on synthetic diblock copolymers consisting of a fully hydrophilic block of poly[-(1,3-dihydroxypropyl)methacrylamide] (poly(DHPMA)) and a thermoresponsive block of poly[-(2,2-dimethyl-1,3-dioxan-5-yl)methacrylamide] (poly(DHPMA-acetal)) as drug delivery and smart stimuli-responsive materials. The copolymers were designed for eventual medical application to be fully soluble in aqueous solutions at 25 °C.

View Article and Find Full Text PDF

This work describes the preparation of highly homogeneous thermoplastic starches (TPS's) with the addition of 0, 5, or 10 wt.% of maltodextrin (MD) and 0 or 3 wt.% of TiO nanoparticles.

View Article and Find Full Text PDF

Biguanide-based cationic polyelectrolytes are used as key components of interpolyelectrolyte complexes bolstering alginate hydrogel microcapsules employed in cell therapies. Nevertheless, electrostatic complexation of these unique polycations has not been studied before. In this study, the interaction between biguanide condensates and anionic polyelectrolytes with carboxylate groups was studied on a model system of a metformin condensate (MFC) and an anionic diblock polyelectrolyte poly(methacrylic acid)--poly(ethylene oxide) (PMAA-PEO).

View Article and Find Full Text PDF

Purpose Of Study: Total joint replacements (TJR) have become the cornerstone of modern orthopedic surgery. A great majority of TJR employs ultrahigh molecular weight polyethylene (UHMWPE) liners. TJR manufacturers use many different types of UHMWPE, which are modified by various combinations of crosslinking, thermal treatment, sterilization and/or addition of biocompatible stabilizers.

View Article and Find Full Text PDF

Nanocomposites with a natural rubber (NR) matrix containing organomodified montmorillonite (MMT) as a precursor of nanoparticles were prepared using two different polyoxazolines as surface modifiers of the MMT. The materials were characterized by X-ray diffraction, transmission electronic microscopy and ultimate mechanical properties, and parameters obtained by DMTA method (storage and loss moduli and loss tangent) were determined. It was found that the effect of nanofillers presence has a significant effect on tensile strength as well as elongation at break, which are higher for materials with higher viscosity due to the presence of carbon blacks compared to the composites without carbon blacks.

View Article and Find Full Text PDF