Publications by authors named "M Skehel"

Reactive fragment (RF) screening has emerged as an efficient method for ligand discovery across the proteome, irrespective of a target's perceived tractability. To date, however, the efficiency of subsequent optimisation campaigns has largely been low-throughput, constrained by the need for synthesis and purification of target compounds. We report an efficient platform for 'direct-to-biology' (D2B) screening of cysteine-targeting chloroacetamide RFs, wherein synthesis is performed in 384-well plates allowing direct assessment in downstream biological assays without purification.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of the protein phosphatase PP7 in the asexual blood stage development of malaria parasites, revealing that its disruption leads to severe growth arrest.
  • PP7 is identified as a calcium-dependent phosphatase that interacts with calmodulin and calcium-dependent protein kinase 1 (CDPK1), indicating its involvement in calcium signaling essential for the parasite's development.
  • The findings emphasize that while PP7 is not necessary for invading red blood cells, it is crucial for the ring-stage development, highlighting its importance in the life cycle of malaria parasites and the potential for targeting the protein for new drug discoveries.
View Article and Find Full Text PDF

Ribosomal protein S6 kinases belong to a family of highly conserved enzymes in eukaryotes that regulate cell growth, proliferation, survival, and the stress response. It is well established that the activation and downstream signalling of p70S6Ks involve multiple phosphorylation events by key regulators of cell growth, survival, and energy metabolism. Here, we report for the first time the covalent modification of p70S6K1 by coenzyme A (CoA) in response to oxidative stress, which regulates its kinase activity.

View Article and Find Full Text PDF

Background: The malaria parasite Plasmodium falciparum replicates within red blood cells, then ruptures the cell in a process called egress in order to continue its life cycle. Egress is regulated by a proteolytic cascade involving an essential parasite subtilisin-like serine protease called SUB1. Maturation of SUB1 initiates in the parasite endoplasmic reticulum with autocatalytic cleavage of an N-terminal prodomain (p31), which initially remains non-covalently bound to the catalytic domain, p54.

View Article and Find Full Text PDF

The cGMP-dependent protein kinase (PKG) is the sole cGMP sensor in malaria parasites, acting as an essential signalling hub to govern key developmental processes throughout the parasite life cycle. Despite the importance of PKG in the clinically relevant asexual blood stages, many aspects of malarial PKG regulation, including the importance of phosphorylation, remain poorly understood. Here we use genetic and biochemical approaches to show that reduced cGMP binding to cyclic nucleotide binding domain B does not affect in vitro kinase activity but prevents parasite egress.

View Article and Find Full Text PDF