Publications by authors named "M Sinvani"

Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches.

View Article and Find Full Text PDF

In this research, we present a novel approach to achieving super-resolution in silicon using the plasma dispersion effect (PDE) that temporarily controls the complex refractive index of matter. By employing a laser vortex pump beam, which is absorbed in the silicon, we can shape the complex refractive index as a gradient index (GRIN) lens, enabling the focusing of a laser probe beam within the material. Our study introduces a single beam at a wavelength of 775 nm for both the pump and the probe beams, offering tunable focusing capabilities and the potential to attain higher spatial resolution.

View Article and Find Full Text PDF

We report here on focusing of a probe IR (λ = 1.55 μm) laser beam in silicon. The focusing is done by a second pump laser beam, at λ = 0.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) and photothermal therapy (PTT) are promising therapeutic methods for cancer treatment; however, as single modality therapies, either PDT or PTT is still limited in its success rate. A dual application of both PDT and PTT, in a combined protocol, has gained immense interest. In this study, gold nanoparticles (AuNPs) were conjugated with a PDT agent, meso-tetrahydroxyphenylchlorin (mTHPC) photosensitizer, designed as nanotherapeutic agents that can activate a dual photodynamic/photothermal therapy in SH-SY5Y human neuroblastoma cells.

View Article and Find Full Text PDF

Tungsten disulfide nanotubes (WS-NTs) were found to be very active for photothermal therapy. However, their lack of stability in aqueous solutions inhibits their use in many applications, especially in biomedicine. Few attempts were made to chemically functionalize the surface of the NTs to improve their dispersability.

View Article and Find Full Text PDF