Publications by authors named "M Simenas"

Membrane proteins are integral to numerous cellular processes, yet their conformational dynamics in native environments remains difficult to study. This study introduces a nanodelivery method using nanodiscs to transport spin-labeled membrane proteins into the membranes of living cells, enabling direct in-cell double electron-electron resonance (DEER) spectroscopy measurements. We investigated the membrane protein BsYetJ, incorporating spin labels at key positions to monitor conformational changes.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on how heating (thermal annealing) helps create metal-organic and covalent polymer networks on metal surfaces, using a computational model that looks at both metal and carbon-carbon bonds during the self-assembly process of specific molecules.
  • - A Monte Carlo simulation is used to analyze the effects of gradually removing bromine atoms from these molecules, showing that leftover halogens may cause fragmentation in the networks on copper and gold surfaces.
  • - The findings indicate that the resulting networks are primarily disordered or have limited order, but improved organization can occur when bromine atoms are adequately removed, potentially leading to structures where oligomer chains are connected by metal atoms.
View Article and Find Full Text PDF

Flavin mononucleotide (FMN) is a ubiquitous blue-light pigment due to its ability to drive one- and two-electron transfer reactions. In both light-oxygen-voltage (LOV) domains of phototropin from the green algae , FMN is noncovalently bound. In the LOV1 cysteine-to-serine mutant (C57S), light-induced electron transfer from a nearby tryptophan occurs, and a transient spin-correlated radical pair (SCRP) is formed.

View Article and Find Full Text PDF

Hybrid methylammonium (MA) lead halide perovskites have emerged as materials exhibiting excellent photovoltaic performance related to their rich structural and dynamic properties. Here, we use multifrequency (X-, Q-, and W-band) electron paramagnetic resonance (EPR) spectroscopy of Mn impurities in MAPbCl to probe the structural and dynamic properties of both the organic and inorganic sublattices of this compound. The temperature dependent continuous-wave (CW) EPR experiments reveal a sudden change of the Mn spin Hamiltonian parameters at the phase transition to the ordered orthorhombic phase indicating its first-order character and significant slowing down of the MA cation reorientation.

View Article and Find Full Text PDF

Lead halide perovskites are extensively investigated as efficient solution-processable materials for photovoltaic applications. The greatest stability and performance of these compounds are achieved by mixing different ions at all three sites of the APbX structure. Despite the extensive use of mixed lead halide perovskites in photovoltaic devices, a detailed and systematic understanding of the mixing-induced effects on the structural and dynamic aspects of these materials is still lacking.

View Article and Find Full Text PDF