Publications by authors named "M Silgram"

Sediment and P inputs to freshwaters from agriculture are a major problem in the United Kingdom (UK). This study investigated mitigation options for diffuse pollution losses from arable land. Field trials were undertaken at the hillslope scale over three winters at three UK sites with silt (Oxyaquic Hapludalf), sand (Udic Haplustept), and clay (Typic Haplaquept) soils.

View Article and Find Full Text PDF

Nitrogen and phosphorus retention estimates in streams and standing water bodies were compared for four European catchments by a series of catchment-scale modelling tools of different complexity, ranging from a simple, equilibrium input-output type to dynamic, physical-based models: source apportionment, MONERIS, EveNFlow, TRK, SWAT, and NL-CAT. The four catchments represent diverse climate, hydrology, and nutrient loads from diffuse and point sources in Norway, the UK, Italy, and the Czech Republic. The models' retention values varied largely, with tendencies towards higher scatters for phosphorus than for nitrogen, and for catchments with lakes (Vansjø-Hobøl, Zelivka) compared to mostly or entirely lakeless catchments (Ouse or Enza, respectively).

View Article and Find Full Text PDF

An ensemble of nutrient models was applied in 17 European catchments to analyse the variation that appears after simulation of net nutrient loads and partitioning of nutrient loads at catchment scale. Eight models for N and five models for P were applied in three core catchments covering European-wide gradients in climate, topography, soil types and land use (Vansjø-Hobøl (Norway), Ouse (Yorkshire, UK) and Enza (Italy)). Moreover, each of the models was applied in 3-14 other EUROHARP catchments in order to inter-compare the outcome of the nutrient load partitioning at a wider European scale.

View Article and Find Full Text PDF

The application of diffuse pollution models included in EUROHARP encompassed varying levels of parameterisation and approaches to the preparation of input data depending on the model and modelling team involved. Modellers consistently faced important decisions in relation to data interpretation, especially in those catchments with unfamiliar physical or climatic characteristics, where catchment conditions were beyond the range for which a particular model was originally developed, or where only limited input data were available. In addition to a broad discussion of data issues, this paper compares the performance of the four sub-annual output models tested in EUROHARP (EveNFlow, NL-CAT, SWAT and TRK) in three test catchments without the modelling teams having sight of measured flow and nitrate concentration data.

View Article and Find Full Text PDF

The capability of eight nutrient models to predict annual nutrient losses (nitrogen and phosphorus) at catchment scale have been studied in the EUROHARP project. The methodologies involved in these models differ profoundly in their complexity, level of process representation and data requirements. This evaluation is focused on model performance in three core catchments: the Vansjø-Hobøl (Norway), the Ouse (Yorkshire, UK) and the Enza (Italy).

View Article and Find Full Text PDF